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Abstract 

The reliability and availability of induction motors is 

significant which can be achieved by monitoring the 

performance of the motor regularly in the industry.  

Knowledge-based approaches can be able efficiently to deal with 

the sensor data for ensuring the reliability with high motor 

performance. Recently, deep learning networks based on 

machine learning structures have provided an accurate and 

faster framework for fault diagnosis by ignoring feature 

extraction process. However, training a deep convolutional 

neural network (CNN) is complex and time-consuming 

procedure. For this reason, this paper proposes a novel deep 

learning procedure for fault diagnosis using thermal images 

data of the induction motor applying residual neural network 

with 50 convolutional layers as feature extraction. The pre-

trained deep convolutional (ResNet-50) of the transfer learning 

is trained on ImageNet based weight. This work includes the 

effect of data augmentation for enhancing the performance of 

the proposed model and ensuring its robustness for fault 

diagnosis. Firstly, the collected images are pre-processed resized 

as input datatype of Resnet-50 network. Next, transfer leaning 

model based on convolutional neural network (ResNet-50) 

structure is built to process the prepared images. Lastly, 

classifying the prepared images based on the related conditions 

of the induction motor. The experimental result shows that the 

proposed model has achieved an accuracy of 99.98%. The 

presented model has further compared with recent deep 

learning applications, and it has proved its robustness in fault 

diagnosis. 

Keywords: Thermal mages, ResNet-50 model, pre-trained 

model, fault diagnosis. 

I. INTRODUCTION 
It is possible for several problems to arise unexpectedly in the 

induction motors and causing a failure during even the normal 

operation which can lead to production loss. However, by applying 

condition monitoring to check the behavior of the motor. So, the 

motor lifetime can be extended, and maintenance cost can be 

minimized [1]. Many types of defects may occur in an induction 

motor, which can be categorized under electrical and mechanical 

defects which are caused by abrasion, unbalanced loads, electrical 

stress. Mechanical failure such as the bearing fault is the most 

frequent fault in the induction motor which represents around 53% 

of the motor faults [2]. Electrical fault such as the rotor fault appears 

with 10% of the motor failure [3]. In addition, stator fault stator 

failure occurs typically at a rate of 38% of motor failure [4]. In recent 

years, many researchers have focused their attention on fault 

diagnostics in different science fields. As a common type of fault 

diagnosis, data-driven fault diagnostic technique which has attracted 

the researcher’s attention may construct failure modes using the 

historical data of the application without the need of signal 

symptoms [5]. This can make it particularly adapted for complex 

systems with a large amount of data [6]. With the faster growth of 

smart manufacturing, the amount of data produced by machines and 

devices is further increased and easier to be collected. The ability to 

learn about huge amount of historical data is the most important 

aspect of the data-driven fault diagnostic technique [7]. A number 

of methods have applied in this field such as K-Nearest Neighbor 

(KNN), support vector machine (SVM), Random Forest algorithm 

(RF), Invasive Weed Optimization algorithm (IWO), and artificial 

neural networks (ANN). In [3] KNN was suggested to build a 

diagnostic system to detect the degradation of the bearing and the 

result was satisfactory based on the diagnostic performance. SVM 

is proposed in [8] to build a reliable fault diagnosis scheme for 

incipient low speed rolling elements bearing failure. The 

Experimental results reported that the proposed model has achieved 

a highest classification accuracy of 98.4%. In [9] RF was intended 

to achieve a novel hybrid approach for fault diagnosis of rolling 

bearings. The obtained results showed that the proposed method 

reached a classification accuracy rate of 88.23%. In [10] a new 

diagnostic model is proposed applying the current and the vibration 

signals. The model combines the invasive weed optimizer with three 

different machine learning algorithms. The results have confirmed 

that the performance of the proposed model is satisfactory. A novel 

model was proposed in [11] for diagnosing bearing faults. The 

experimental results showed that the proposed scheme is a 

successful framework. As the aforementioned machine learning 

methods are comprised of feature extraction and feature selection 

processes [12]. It is however difficult to extract discriminative 

features to build a robust classification model [13]. Therefore, Deep 

learning (DL) has developed as a new area of research in the 

machine-learning science in order to address the issues mentioned 

above which it is capable of autonomously learning the 

representation attributes from raw data [14]. The use of DL 
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approaches in the field of fault diagnosis has become increasingly 

popular such as deep belief network (DBN) and convolutional 

neural network (CNN) [15]. The use of such DL network show great 

potential for fault diagnosis can achieve the reduction of the 

handcrafted features impact created by feature extraction 

algorithms. However, fault identification requires a minimal number 

of labelled samples which limit the final prediction accuracies. In 

addition, DL models can include up to 5 hidden layers [16]. So, it is 

difficult to train deep CNN models without a huge amount of 

training datasets to train deep CNN models. Several studies have 

built deep CNN models by combining transfer learning techniques 

(TL) on ImageNet [17], then applied these CNN models as feature 

extractors on a small dataset in another domain [18]. Hence, deep 

TL can offer promising approaches to the problem of fault diagnosis. 

TL model uses deep learning network (DL) to transfer high-level 

properties from source data to target data [19]. One of the 

advantages of deep transfer learning is to use a layer-by-layer 

learning pattern to extract attribute from the input data, which allows 

its deep architecture to produce high data representations with a 

potential enhancement of the diagnosis performance. 

As a result of this, this work proposes an efficient fault diagnosis 

model using transfer convolutional neural network based on residual 

neural network as a feature extractor considering 50 layers. ResNet-

50 can extract high-quality features from images on ImageNet. It is 

anticipated that the suggested (ResNet-50) would increase the final 

prediction accuracy on fault diagnosis. The proposed model is 

investigated using thermal images of the induction motor.  

     The rest of this paper is structured as follows: Section II 

defines the related work; Section III presents the proposed model; 

materials and methods are illustrated in section IV; Section V 

reports results; and the conclusion is drawn in section VI. 

II.RELATED WORK  

    This study includes data-driven fault diagnosis utilizing deep 

CNN networks and feature transfer. Due to the rapid development 

of smart manufacturing, data-driven fault detection has emerged as 

a popular research topic in recent years[12]. In [20] a new fault 

diagnosis based on the use the transfer learning of  sparse 

autoencoder method and the experimental result has achieved a high 

accuracy of 99.82 %. In [21] The use of recurrent neural networks 

and dynamic Bayesian modelling to detect faults in induction motors 

was investigated. The model has carried out the real-time 

experiments with three motors, estimating the probability 

distributions for the motor's conditions and the model achieved an 

efficient result. A new model based on a performance comparison 

of sparse autoencoder with SoftMax regression was proposed in 

[22], and the result was satisfactory. In [23] a new model was 

proposed for intelligent fault diagnosis applying normalized sparse 

autoencoder of air compressors. In [24] a fault diagnosis method was 

suggested using stacked sparse autoencoder with ensemble 

empirical mode decomposition and the result has proved the 

robustness of the extracted features. In [25] deep learning model 

based hierarchical diagnosis method to diagnose the rolling element 

bearing fault, the obtained result has investigated the reliability of 

the model. A new deep transfer learning model was suggested in 

[26] to diagnosis the industry application faults, and the achieved 

result has investigated several state-of-art transfer learning result 

considering the operating condition and fault severities.  Recently, 

an adaptive deep CNN model was suggested in [27], and the result 

was effective and robust. In [28] a hierarchical adaptive CNN was 
investigated for weight updating by adding an adaptive 

learning rate and a momentum component. In [29] an 
intelligent fault diagnosis model using hierarchical CNN was 

proposed for diagnosing rolling bearing faults. The result has proved 

the effectiveness of the CNN model. A new fault diagnosis based on 

the use of CNN with empirical mode decomposition was proposed 

in [30] and its results have indicated that more accurate and reliable 

than previous approaches. In [31] a CNN model-based approach for 

fault diagnosis was suggested for rotating machinery. The model 

compared to traditional techniques that rely on manual feature 

extraction, the results have demonstrated that the suggested method 

provides superior diagnostic performance. As reported by the 

aforementioned methods, there are not any published studies using 

to ResNet-50 model-based CNN tested on thermal images data of 

the induction motor. Therefore, a novel intelligent model for fault 

diagnosis is proposed in this work applying the pre-trained ResNet-

50 model with an adjusted densely connected classifier. The 

robustness of the proposed model was investigated using thermal 

images of different conditions of the induction motor. 

III.PROPOSED TECHNIQUE 

The presented work builds a novel application that uses a pre-

trained (ResNet-50) model based on CNN as a feature extractor. The 

whole dataset is divided into train, validation, and test subsamples 

which each subsample continuously plays the role of validating 

dataset to achieve the reliable performance for fault diagnosis. This 

model is trained by applying the weight of the ImageNet dataset. 

The block diagram of proposed model is shown in figure 1. Images 

are pre-processed with class imbalance technique and data 

augmentation technique. This can affect the achieved results by 

controlling the image zoom, horizontal flip, rotation, translation, and 

image orientation. Then, the structure of resnet-50 network was 

initialized restoring the pre-trained weight in ResNet-50. Next, the 

images are taken as input to obtain the features and training the 

model for the classification purpose. SoftMax classifier layers were 

added with 128 hidden neurons and determined with seven label 

classes. Adam optimizer, ReLU activation function, L2 regulation, 

categorical cross-entropy (CE), and dropout layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. Block diagram of the proposed network  
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The categorical cross-entropy  

(CE) =      − ∑ 𝑡𝑖 log(𝑓(𝑠)𝑖)𝐶
𝑖                                      (1) 

Where 𝑡𝑖 is the ground truth, and 𝑓(𝑠)𝑖 is the standard SoftMax. 

𝑓(𝑠)𝑖 =  
𝑒𝑠𝑖

∑ 𝑒
𝑠𝑗 𝐶

𝑖

                                                             (2) 

    Where 𝑠𝑖  presents the given the class, 𝑠𝑗  is the scores derived 

from the net for each class. 

 

IV.MATERIALS AND METHODS 
 

A.  Deep ResNet-50 network architecture 

 

   CNN models' ability to accurately diagnose faults is 

constrained with the help of transfer learning that trained on 

ImageNet  [17]. This work uses ResNet-50 that trained on ImageNet 

to classify different thermal images conditions of the induction 

motor. Resent-50 model has achieved an efficient performance in 

the field of images classification which extracts good quality 

features of images for building a strong fault diagnosis model. 

 

The proposed ResNet-50 is consisted of 50-layers deep 

CNN[32] which includes one max- pooling layer, one average pool, 

and 48 convolutional layers. The basic structure of ResNet-50 is 

illustrated in figure 2 that used as feature extractor. The ResNet-50 

is composed of five convolutional blocks of layers. The final 

convolutional block of a 50-layer deep residual network produces 

deep residual features that pre-trained on ImageNet. The 

convolutional blocks of a ResNet-50 are different from those of the 

traditional CNNs because of the introduction of a shortcut the 

connection between the input and output of each block. Using 

identity mappings as ResNet-50 shortcut connections can optimize 

the training process and minimise complexity[33]. That can lead to 

achieve a deeper model with fast training and less computational 

model if compared to i.e. VGG model [34]. 

The proposed work extracts the features from thermal images 

using last convolutional block of ResNet-50 (pre-trained model), 

and the output of the 5th Conv block is trained for fault classification. 

As a result, the output size of ReseNet-50 then is 2480. 

 

B. Data Collection 

 
The induction motor thermal images were captured in the 

Wolfson Magnetics Laboratory, School of Engineering Cardiff 

University, UK. The test rig is displayed in figure 3 which composes 

of the following components: induction motor, thermal camera 

(FLIR C2), and dynamometer, which serves as the load. The thermal 

camera was located approximately 60 cm from the motor housing 

center. 

 

The thermal images have been captured with seven motor 

conditions considering the healthy and the faulty motor cases when 

the motor running at two speeds as described in Table1. 

 

C. Data pre-processing 

  
Due to the input size of the prosed ResNet-50 are 224 × 224 and 

the size of the collected images are 320×240, these images were 

resized to 224 × 224. Dataset was built which includes seven classes 

based on different motor conditions and each class has 350 images. 

The images are proposed with class imbalance technique and data 

augmentation technique to improve the model performance. This 

layer affects the achieved results by controlling the image zoom, 

horizontal flip, rotation, translation, and image orientation. 

D. Model evaluation  

Some evaluation matrices have utilized to assess the 

performance of the proposed application such as the training 

accuracy and loss curves and the parameters given in the 

following equations: 

 

 

Overall accuracy  =   
TP+TN

TP+FP+TN+FN
                                  (3) 

 

Precision  =  
TP

TP+FP
                                                           (4)  

  

Sensitivity  = 
TP

TP+FN
                                                          (5) 

 

F1_score = 2×
Precision × Sensitivity

Precision+ Sensitivity
                                   (6) 

     Where TP is the true positive prediction, FP is false positive 

predictions, TN presents the true negative predictions, and the false 

negative predictions is stated by FN. 

 

V.  RESULT 

 

The result of the pretrained model is presented for fault 

diagnosis in this section. Induction motor thermal images with 

different cases were employed as an input of the pre-trained ResNet 

model based on 50 layers network to extract the model features on 

ImageNet dataset. These features were trained on FC layer to predict 

the correct class. The classification result is presented in Table 2. 

The model has achieved classification accuracy of 99.98% with 

training error of 0.0015. In addition, the precision and F1-score have 

achieved great scores of 98.59, and 94.89; respectively. The overall 

trained accuracy and loss considering same epochs number are 

displayed in figure 4 and 5; respectively.  
 

Table 1. Motor conditions 

Fault mode Motor load 

(rpm) 

Images 

No. 

Class 

label 

Normal motor 1480/1450 350 0 

IBF 1480/1450 350 1 

OBF 1480/1450 350 2 

8BRBF 1480/1450 350 3 

IBF+1BRBF 1480/1450 350 4 

OBF+5BRBF 1480/1450 350 5 

BBF+8BRBF 1480/1450 350 6 
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The classification accuracy of this model is further compared 

with recent published deep learning methos based (CNN). 

Normalized SAE was proposed by Jia in [23], stacked sparse 

autoencoder model was presented by Oi in  [24], sparse filter (SF) 

proposed by Lei in [35], and deep belief network (DBN) presented  

by Gan [25]. 

 

  

It has been observed that the proposed ResNet-50 network 

achieves the best results and the accuracy compassion results are 

presented in Table 3. It can be concluded that the suggested pre-

trained network ResNet-50 trained on ImageNet has successfully 

achieved a satisfactory application for diagnosing induction motor 

faults using motor thermal images. 

 

 

 

 

 

IV. CONCLUSION 

 
This study develops a new fault diagnosis model applying a 

ResNet-50 CNN based transfer learning network. Thermal images 

were applied and pre-processed using data augmentation techniques 

for improving the final prediction accuracy, then provided as inputs 

to deeper feature extraction network based pretrained model of 

ReseNet-50. The combination of the proposed pre-trained network 

 

                                       Figure 2. The architecture of the proposed ResNet-50 network 

 

              Figure 3. Test rig of the experiments   

Table 2. model classification result  

  Train ResNet-50 network with thermal 
images 

 score Batch 
size 

epochs 

Accuracy (%) 99.98 64 100 

Precision (%) 98.59 64 100 

Sensitivity 
(%) 

95.99 64 100 

F1-score (%) 94.89 64 100 

 

Table 3. accuracy comparison with other methods 

Model Accuracy  

Proposed model 99.98 

NSAE-LCN 99.92 

SSAE 99.85 

Sparse filter 99.66 

DBN 99.03 

 

Figure 4. Training accuracy curve applying ReseNet-50 

 

Figure 5. Training loss curve applying ReseNet-50 
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with densely connected classifier has given a highest classification 

accuracy of 99.98%. in addition, the model has been compared with 

other deep learning model, and the results show that the proposed 

resent-50 is the best. 

Concisely, the overall accuracy of the classification method is 

satisfactory, suggesting that this model has potential applicability in 

the identification of induction motor faults utilizing the thermal 

imaging data. In future work, detection time is also considered for 

implementing the model. Moreover, the proposed model is trained 

using cross-validation technique for further accuracy improvement. 

Furthermore, this model is implemented for online application that 

based on fault detection. 
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