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Abstract 

Waste management and energy crisis are some of the 

greatest issues that the world is facing today. This problem can 

be mitigated by anaerobic digestion (AD), where 

microorganisms in the absence of oxygen produce biogas from 

organic waste. A useful tool for AD process understanding and 

optimization is numerical simulation by using mechanistically 

inspired mathematical models. In this paper attention is focused 

on modeling of the AD process of a full-scale biogas plant. 

Special attention is focused on calibration of 178 model 

parameters belonging to the BioModel, developed in-house; this 

is done by using an active set optimization procedure. The 

agreement of the obtained results of numerical simulation in a 

single CSTR and the measured AD performance over a period 

of one year, confirms the efficiently of the used BioModel when 

considering the presence of the Kemira BDP-840 additive to 

reduce 𝐇𝟐𝐒 content of the produced biogas. The obtained results 

show that the active set optimization procedure, coupled by a 

gradient based optimizer to calibrate the model parameters, 

performs very well. The procedure is numerically efficient, 

especially if the computation of design derivatives is 

parallelized. The used BioModel can easily be coupled with the 

procedure of AD performance optimization. 

Keywords: Model parameters, calibration, additives, gradient-

based optimization, active set optimization procedure 
 

I. INTRODUCTION 
A useful tool for anaerobic digestion (AD) process understanding 

and optimization is numerical simulation by using mechanistically 

inspired mathematical models. Till today, various mechanistically 

inspired AD models, ADM1 [1-6] and BioModel [7-13] based 

models, were developed containing various number of unknown or 

hardly determined AD model parameters, such are biochemical, 

kinetic, physicochemical, and stoichiometric model parameters. As 

the number of model parameters increases by expanding 

mathematical models, the efficiency and reliability of the calibration 

procedure typically decreases. Therefore, various procedures to 

reduce the number of the model parameters, which has to be 

calibrated, were proposed. In general, these procedures are based on 

adequate sensitivity analysis or similar approaches to calibrate 

various number of model parameters [13-21]. For example, Ahmed 

& Rodríguez [22] proposed the combined correlation-based 

parameter estimation with a sensitivity-based hierarchical and 

sequential single parameter optimization for sulfate reduction 

process by using the ADM1 model, while Kegl & Kovač Kralj [12] 

used an active set optimization (ASO) procedure combined with a 

gradient-based optimization algorithm in order to calibrate 113 

model parameters of a BioModel. 

In this paper attention is focused on the modeling of the AD process 

of a full-scale biogas plant by using a BioModel. More preciselly,  

the focus is on the calibration of its 178 unknown design parameters 

by engaging the ASO procedure. A comparison of the daily 

dynamics of the predicted and measured AD performance as well as 

statistical indicators  show that all 178 AD parameters (13 feedstock 

and 165 model parameters) can be successfully and efficiently 

calibrated by the engaged ASO procedure. 

 

II. BIOGAS PLANT EXPERIMENTAL DATA 
The operation data used for AD simulation input and model 

calibration were obtained from a full-scale biogas plant Draženci 

(Slovenia). This plant consists of two equal mesophilic continuously 

mixed reactors (CSTRs). Both single-stage CSTRs have a hold up 

of 2500 m3 with one common gas storage facility of 2500 m3. The 

daily variation of total loading rate of the complex substrate (F-CS), 

temperature, and pH value in the CSTRs for a total period of two 

years are presented in Figure 1. The AD process with a retention 

time of approximately 33 days takes place at a constant pressure of 

1.006 bar. The F-CS consists of poultry manure (PM), corn silage 

(CS), corn meal (CM), fat matter (FM), food waste (FW), and added 

water (W). The daily variations of fractions of CM, FM, FW, PM, 

CS, and W in the F-CS are shown for a total period of two years in 

Figure 2 and Figure 3. The composition of each substrate of F-CS 

containing TS-total solid, OM-organic matter, ch -carbohydrates, 

pr-proteins, li-lipids, Cio, Nio, Sio, Kio, and Pio - inorganic carbon, 

nitrogen, sulfur, potassium, and phosphorus, and other elements and 

compounds, Table 1, was determined by the usage of methods 

prescribed in the corresponding standards.  
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Figure 1. Measured loading rate of F-CS and AD conditions. 

 

Figure 2. Measured fractions of CM, FM, and FW in F-CS. 

 

Figure 3. Measured fractions of PM, CS, and W in F-CS. 

 

Table 1. Composition of substrates in F-CS 

F-CS PM CS CM FM FW 

TS (%) 75.73 47.68 65.85 34.12 91.99 

OM (% TS) 84.76 96.58 98.35 98.00 98.08 

ch (gL-1) 10.735 6.488 6.438 4.309 31.707 

pr (gL-1) 45.936 33.022 56.970 74.723 66.220 

li (gL-1) 3.555 3.226 19.750 236.312 26.970 

Cio  (gL-1) 3.57499 2.14185 0.71529 0.13711 42.80220 

Nio (gL-1) 1.55322 0.62786 1.08176 1.30420 1.15234 

Sio  (gL-1) 3.57599 0.06147 0.37446 0.00100 0.98493 

Kio (gL-1) 3.23805 1.10575 1.13509 0.04708 2.51013 

Pio (gL-1) 2.61164 1.01155 3.54957 0.90058 6.63018 

Ca (gL-1) 3.61388 0.18493 0.02899 1.56674 18.09087 

Cr (gL-1) 0.00346 0.00026 0.00083 0.00250 0.00111 

Cu (gL-1) 0.00991 0.00035 0.00083 0.00238 0.01258 

Fe (gL-1) 0.11026 0.00542 0.01380 0.20543 0.27517 

Mg (gL-1) 0.81457 0.10843 0.30957 0.06587 0.88034 

Na (gL-1) 0.38816 0.00055 0.00746 0.06184 0.50550 

NO2 (gL-1) 0.00871 0.00025 0.00175 0.00003 0.00048 

Ni (gL-1) 0.00052 0.00026 0.00083 0.00110 0.00111 

Pb (gL-1) 0.00028 0.00026 0.00083 0.00067 0.00111 

Zn (gL-1) 0.05228 0.00026 0.00535 0.02188 0.13295 
 

To reduce the production of H2S during the AD process, the Kemira 

BDP-840 additive, containing the FeCl2, in the amount of 100 L/day 

is added daily to the F-CS. 

The total measured unrefined biogas volume is 4720983 m3 in the 

first year, and 4364544 m3 in the second year. This biogas contains 

approximately 54% CH4, 45% CO2, 60 ppm of H2, 200 ppm of H2S, 

and 800 ppm of NH3. For the two years of observation, the measured 

daily produced biogas and CH4 flow rates are presented in Figure 4, 

while H2 and H2S flow rates are given in Figure 5. 

 

Figure 4. Measured biogas and 𝐶𝐻4 flow rates in the biogas plant. 

 

Figure 5. Measured 𝐻2 and 𝐻2𝑆 flow rates in the biogas plant. 

The daily variations of the shown data, measured at the plant during 

the first 365 days period, were used to calibrate the feedstock and 

model parameters of the proposed BioModel, while the measured 

data of the second year were used for BioModel validation. 

 

III. BIOMODEL PARAMETERS 

CALIBRATION 

In order to calibrate a large number of design parameters (feedstock 

and model parameters) belonging to the BioModel, the ASO 

procedure is used in this work. In general, the employed ASO 

procedure involves the BioModel for numerical simulation of the 

AD process, a sensitivity analysis for determination of the active 

design variables from the set of all included design parameters, and 

an optimal design procedure. 

A. BioModel 
The used mathematical model in this paper is of a BioModel-type 

[12], where biochemical and physicochemical processes during AD, 

considering the degradation of carbohydrates, proteins, and lipids 

into CH4 and many other by-products, are described by the system 

of 75 ordinary differential equations (ODEs) and 53 algebraic 

equations (AEs).  Physicochemical processes are related to (i) 

liquid-gas mass transfer for the set of biogas compounds  𝐼gas =

{CH4, CO2, H2, H2S, NH3 } and to (ii) liquid-solid mass transfers for 

the set of precipitates 𝐼prec = {CaCO3, MgCO3, FeCO3,  NiCO3,

CuCO3, PbCO3, ZnCO3, FeS, CuS, NiS, PbS, ZnS, Ca3(PO4)2,
Fe3(PO4)2, Ni3(PO4)2, MgNH4PO4, KMgPO4} . The BioModel 

includes a set of 178 design parameters as follows: (i) initial 
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concentrations of 13 bacteria types from the set of 𝐼bac; acidogenic 

degraders of sugar, amino acids, glycerol, and  oleic acid (𝑋Asu, 

𝑋Aaa , 𝑋Agly , and 𝑋Aoa ), acetogenic degraders of propionic acid, 

butyric acid, and valeric acid (𝑋Apro, 𝑋Abu,  𝑋Ava), methanogenic 

degraders of acetate and hydrogen ( 𝑋Mac  and 𝑋Mhyd ) sulfate 

reducing bacteria involving in reduction of sulfates ( 𝑋Ss ), and 

competing for propionate, acetate, and hydrogen (𝑋Spro, (𝑋Sac, and 

𝑋Shyd; (ii) 3 hydrolysis rate constant: for carbohydrates, proteins, 

and lipids (𝑘hyd,ch, 𝑘hyd,pr,  𝑘hyd,li); (iii) 26 inhibition constants; 

VFA inhibition of hydrolysis process (𝐾i,VFA) and inhibitions of 

various compounds and metals ions on various bacteria growth 

( 𝐾i,H2,Agly , 𝐾i,H2,Aoa , 𝐾i,H2,Apro , 𝐾i,H2S,Apro , 𝐾i,H2,Abu , 𝐾i,H2S,Abu , 

𝐾i,H2,Ava , 𝐾i,H2S,Ava , 𝐾i,H2S,Mac , 𝐾i,NH3,Mac , 𝐾i,Cu2+,Abu , 𝐾i,Zn2+,Abu , 

𝐾i,Cr2+,Abu , 𝐾i,Pb2+,Abu , 𝐾i,Ni2+,Abu , 𝐾i,Cu2+,Mac , 𝐾i,Zn2+,Mac , 

𝐾i,Cr2+,Mac , 𝐾i,Pb2+,Mac , 𝐾i,Ni2+,Mac , 𝐾i,H2S,Mhyd , 𝐾i,H2S,Ss , 

𝐾i,H2S,Spro , 𝐾i,H2S,Sac , and 𝐾i,H2S,Shyd); (iv) 2 limitation factors of 

inorganic nitrogen and inorganic phosphorus (𝐾M,Nio
 and 𝐾M,Pio

) to 

all microbial growth rates and 16 Monod saturation constants 

including various substrates and bacteria ( 𝑘M,suAsu , 𝑘M,aaAaa , 

𝑘M,glyAgly , 𝑘M,oaAoa , 𝑘M,proApro , 𝑘M,buAbu , 𝑘M,vaAva , 𝑘M,H2Mhyd , 

𝑘M,acMac , 𝑘M,Sio,atSs , 𝑘M,proSpro , 𝑘M,Sio,atSpro , 𝑘M,acSac , 

𝑘M,Sio,atSac, kM,H2Shyd, 𝑘M,Sio,atShyd), (v) maximal microbial grow 

rates at optimal temperature for each of the 13 bacteria types 

𝜇𝑖,max,𝑇opt
, 𝑖 ∈ 𝐼bac , microbial decays as a percentage of maximal 

microbial growth rates for each of 13 bacteria types 𝑏𝑖,dec, 𝑖 ∈ 𝐼bac, 

(vi) 10 parameters of mass transfer rates from liquid to gas phase, 
(𝐾L𝑎)𝑗,a and (𝐾L𝑎)𝑗,b, 𝑗 ∈ 𝐼gas;  (vii) 17 precipitation rate constants 

𝑘cryst,𝑘 , 𝑘 ∈ 𝐼prec; (viii) 65 parameters related to the determination 

of the bacteria growth rate of various microbial groups;  pK𝑖
lo , 

pK𝑖
up

, 𝛼𝑖, 𝑇𝑖,opt, and 𝑇𝑖,max,  𝑖 ∈ 𝐼bac. These parameters are treated 

as design parameters and are assembled into the vector 𝐱. 

B. Sensitivity analysis 
In the scope of the sensitivity analysis, a set 𝑆𝐱 of random AD model 

designs 𝐱𝒋, 𝑗 = 1, … 𝑁𝑆 (each design 𝐱𝑗  is a complete set of design 

parameters) is generated. Here, a set of 𝑁𝑆 = 5 × 178 = 890 

random designs was used, since numerical experience has shown 

that such a sample was statistically representative enough. For each 

design 𝐱𝑗  from the set 𝑆𝐱  the derivatives 
𝜕𝑔0

𝜕𝑥𝑖
 of the objective 

function are computed. The objective function 𝑔0, Eq. (1), was used 

for this purpose since it was defined as a high-quality measure of 

deviation between numerical simulation (NS) and actual measured 

biogas plant data.  

𝑔0 = 𝜓0,1 ∫ (
𝑄biogas(𝑡)−𝑄biogas,exp(𝑡)

�̅�biogas,exp
)

2

𝑑𝑡
𝑡total

𝑡stab
+

           𝜓0,2 ∫ (
𝑄g,CH4

(𝑡)−𝑄g,CH4,exp(𝑡)

�̅�g,CH4,exp
)

2

𝑑𝑡 +
𝑡total

𝑡stab

            𝜓0,3 ∫ (
𝑄g,H2

(𝑡)−𝑄g,H2,exp(𝑡)

�̅�g,H2,exp
)

2

𝑑𝑡 +
𝑡total

𝑡stab

             𝜓0,4 ∫ (
𝑄g,H2S(𝑡)−𝑄g,H2S,exp(𝑡)

�̅�g,H2S,exp
)

2

𝑑𝑡 +
𝑡total

𝑡stab

             𝜓0,5 ∫ (
pH(𝑡)−pHexp(𝑡)

pH̅̅ ̅̅ exp
)

2

𝑑𝑡
𝑡total

𝑡stab
        (1) 

where 𝜓0,1 , 𝜓0,2 , 𝜓0,3 , 𝜓0,4 , and 𝜓0,5  are normalized weighting 

factors used to scale the relative importance of individual deviations, 

while 𝑄biogas(𝑡) , 𝑄g,CH4
(𝑡) , 𝑄g,H2

(𝑡) , 𝑄g,H2S(𝑡) , 

𝑄biogas,exp(𝑡) , 𝑄g,CH4,exp(𝑡) , 𝑄g,H2,exp(𝑡) , 𝑄g,H2S,exp(𝑡) , 

�̅�biogas,exp , �̅�g,CH4,exp , �̅�g,H2,exp , �̅�g,H2S,exp  are time dependent 

predicted, time dependent measured, and average values of the 

measured biogas, CH4 , H2 , and  H2S  flow rates, respectively. 

Meanwhile, pH(𝑡) , pHexp(𝑡) , and pH̅̅ ̅̅
exp  denote time dependent 

predicted, time dependent measured, and the average values of the 

measured pH value. 

The obtained results of sensitivity analysis are normalized so that 

max
𝑖

(| 
𝜕𝑔0

𝜕𝑥𝑖
|) = 1 for each 𝐱𝑗 . For each design parameter 𝑥𝑖   the 

average absolute value 𝑓AA,𝑖  and variance 𝑓VA,𝑖  of the normalized 
𝜕𝑔0

𝜕𝑥𝑖
 with respect to the whole set 𝑆𝐱 are computed. The normalized 

values of 𝑓AA,𝑖  and 𝑓VA,𝑖  are used to define the importance factor 

𝑓IM,𝑖 = 1

2
𝑓VA,𝑖 + 1

2
𝑓AA,𝑖 of the design parameter 𝑥𝑖. 

C. Optimal design procedure 
The multi-objective optimization problem is reformulated into a 

single-objective function 𝑔0 by summing all considered deviations, 

multiplied by adequate weighting factors, Eq. (1).  

The optimal design problem can be defined by Eq. (2)-(4). 

max 𝑔0(𝐱, 𝐪)     (2) 

subject to constraints 

𝑔𝑖(𝐱, 𝐪) ≤ 0,       𝑖 = 1, … , 𝑘∗     (3) 

and the response equation 

ℎ(𝐱, 𝐪, �̇�, 𝑡) = 0      (4) 

where the vector 𝐱 ϵ 𝑅𝑛∗
 of design variables represents the set of all 

AD parameters of the BioModel. The vector 𝐪 ϵ 𝑅𝑚∗
 assembles the 

response variables describing the response of the AD system and 

�̇� ϵ 𝑅𝑚∗
 are their first time derivatives. The response equation, 

Eq. (4), establishes the dependency of 𝐪 on 𝑡 and 𝐱 and is given by 

the BioModel described in [12]. The scalar functions 𝑔0 and 𝑔𝑖 are 

termed the objective and constraint functions, respectively. The 

objective function is related to the quality of AD performance, while 

the constraints reflect the imposed limitations. The constraint 

functions in the standard form, Eq. (3), are related to the maximal 

allowed initial concentration of all bacteria group and to the allowed 

range of the differences between measured and predicted values of 

the observed AD performance [12]. The symbol 𝑛∗  denotes the 

number of design variables, 𝑘∗ is the number of constraints and 𝑚∗ 

is the number of response variables. 

D. ASO procedure 
The ASO procedure used to calibrate the values of a large number 

of design parameters is described in detail in [12]. In short, it 

consists of following two steps. 

1) Identification and initialization of design variables 
In [12], the following 113 parameters are considered: the initial 

concentrations of the 13 types of bacteria in the F-CS, 3 hydrolysis 

rate constants, 26 inhibition constants, 2 limitation factors, 16 

Monod saturation constants, maximal microbial grow rates at 

optimal temperature for each of the 13 bacteria types, microbial 

decays as a percentage of maximal microbial growth rates for each 

of 13 bacteria types, 10 parameters of mass transfer rates from liquid 

to gas phase, and 17 precipitation rate constants. In this paper, 

another 65 parameters, influencing the growth rate of 13 microbial 

groups 𝜇𝑗 , 𝑗 ∈ 𝐼bac (parameters  pK𝑖
lo,  pK𝑖

up
, 𝛼𝑖, 𝑇𝑖,opt, and 𝑇𝑖,max,  

𝑖 ∈ 𝐼bac) are included. The normalized design variables are defined 

as: 𝑥𝑖 =
(𝑥P,𝑖−xP,𝑖

min)

( xP,𝑖
max−xP,𝑖

min)
∈ [0,1], 𝑖 = 1 … 𝑛∗ , where 𝑥P,𝑖  is the 𝑖th  AD 

feedstock/model parameter, 𝑥P,𝑖
min and 𝑥P,𝑖

max are its lower an upper 

limits, and 𝑛∗ = 178. The initial values of all design variables are 

set to the recommended values obtained from the literature. 

2) Gradual optimization of design variables 

This step is performed in several cycles. Within each cycle, an 

adequate activation threshold value 𝑓𝑇 is chosen to select the active 
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design variables 𝑥𝑖
∗ for which it holds 𝑓IM,𝑖 ≥ 𝑓𝑇 ; all other design 

variables are designated as passive in the current cycle. After that, 

the optimal design problem, Eqs. (2)-(4), is solved in order to 

optimize the active design variables; for this purpose, a gradient-

based algorithm with adaptive approximation scheme is engaged. 

This completes the current cycle. After that a new cycle with a lower 

activation threshold value is started. This procedure is continued 

until all design variables are active and optimized (calibrated). 

 

IV. RESULTS AND DISCUSSION 

The proposed AD model and the whole optimization procedure were 

coded in-house in the C# language. The system of ODEs was solved 

by the Runge-Kutta method with an option to resort to the Euler 

method in case of (very rare) numerical instabilities. The engaged 

optimization algorithm is based on an approximation method [23-

24] which sequentially generates approximate, strictly convex, and 

separable nonlinear programming problems and solves them to 

generate a sequence of converging approximate solutions. The 

algorithm uses the history of design derivatives of the objective and 

constraint functions to gradually improve the quality of the 

approximation. In this work numerical differentiation by using 

simple forward differences was used to get the needed design 

derivatives. Since there are 178 design variables, such derivatives 

computation is rather CPU intensive. To improve numerical 

performance, the computation of design derivatives was 

parallelized; this accelerated the computation by a factor practically 

equal to the number of CPU cores. In this scenario, one full 

optimization cycle (with all 178 design variables being active) took 

about 1 minute of CPU time on an 8-core i7 CPU desktop computer. 

The number of optimization cycles, needed to obtain optimum 

parameters, ranged usually up to 100. 

In the following, the results of BioModel calibration are given as 

well as the results of the calibrated BioModel validation. 

A. BioModel calibration 
During optimization the values of 178 design parameters (13 

feedstock and 165 model parameters) were allowed to vary between 

lower and upper limits. Wherever possible, these limits were 

obtained by taking the smallest and largest values of those 

parameters as reported in the literature [3, 6, 12, 13, 15, 25-29]; the 

lower and upper limit values,  xP,𝑖
min and xP,𝑖

max,  𝑖 = 1 … 𝑛∗, actually 

used in this work, are collected in Table 2. 

In numerical simulation, the first 135 simulation days have been 

considered as a transient response or stabilization period, 𝑡stab , 

needed to reach steady state conditions for the input data 

corresponding to measured biogas plant data at day one. Therefore, 

in case of BioModel calibration, the comparison of the simulated 

and measured results was done only for the period of 365 days which 

follows the stabilization period of 135 days. 

At the beginning, the value of 0.5 is used for the initial values of all 

normalized design variables 𝑥𝑖 . During gradual optimization, the 

threshold values 𝑓𝑇 were sequentially chosen as 0.2 (Set1 1), 0.01 

(Set 2), and 0.001 (Set 3). The corresponding number of active 

design variables 𝑥𝑖
∗ increased from 7 (Set 1), through 24 (Set 2), up 

to 178 (Set 3). The optimized values of 7 active design variables, 

obtained in the optimization of Set 1, were kept as initial values of 

these variables for the optimization of the next set and so on. In Set 3 

all design variables were included as the active design variables 𝑥𝑖
∗ 

and the optimized values of all feedstock and model parameters are 

presented in Table 2.  

The value of the objective function 𝑔0  was gradually minimized 

from 9.685 (initial design) to 0.08575 (optimal design of Set 1 after 

19 iterations), 0.0194 (optimal design of Set 2 after 31 iterations) to 

0.0191 (optimal design of Set 3 after 60 iterations). 

 

Table 2. Feedstock and model parameters: lower, upper and 

optimized data. 

𝑖 Parameter  xP,𝑖
min xP,𝑖

max 
Optimal 

value 

1 𝑋Asu (gL-1) 0.1 0.5 0.29131 

2 𝑋Aaa (gL-1) 0.1 0.5 0.29092 

3 𝑋Agly (gL-1) 0.1 0.5 0.29108 

4 𝑋Aoa (gL-1) 0.1 0.5 0.29144 

5 𝑋Apro (gL-1) 0.1 0.5 0.30138 

6 𝑋Abu (gL-1) 0.1 0.5 0.30078 

7 𝑋Ava (gL-1) 0.1 0.5 0.29793 

8 𝑋Mac (gL-1) 0.1 0.5 0.30778 

9 𝑋Mhyd (gL-1) 0.1 0.5 0.10299 

10 𝑋Spro (gL-1) 0.1 0.5 0.28040 

11 𝑋Sac (gL-1) 0.1 0.5 0.29094 

12 𝑋Ss (gL-1) 0.1 0.5 0.29112 

13 𝑋Shyd (gL-1) 0.1 0.5 0.28475 

14 𝑘hyd,ch (day-1) 1.0 10.0 5.44266 

15 𝑘hyd,pr (day-1) 1.0 10.0 4.95942 

16 𝑘hyd,li (day-1) 1.0 10.0 5.01598 

17 𝐾i,VFA (gL-1) 0.1 0.6 0.22880 

18 𝐾i,H2,Agly (gL-1) 0.01 0.1 0.05280 

19 𝐾i,H2,Aoa (gL-1) 0.01 0.1 0.05280 

20 𝐾i,H2,Apro (gL-1) 0.01 0.1 0.05284 

21 𝐾i,H2,Abu (gL-1) 0.01 0.1 0.05280 

22 𝐾i,H2,Ava (gL-1) 0.01 0.1 0.05279 

23 𝐾i,H2S,Apro (gL-1) 0.1 0.9 0.48386 

24 𝐾i,H2S,Abu (gL-1) 0.1 0.9 0.47729 

25 𝐾i,H2S,Ava (gL-1) 0.1 0.9 0.47697 

26 𝐾i,H2S,Mac (gL-1) 0.1 0.9 0.50035 

27 𝐾i,H2S,Mhyd (gL-1) 0.1 0.9 0.46746 

28 𝐾i,H2S,S𝑠 (gL-1) 0.1 0.9 0.48012 

29 𝐾i,H2S,Spro (gL-1) 0.1 0.9 0.48043 

30 𝐾i,H2S,Sac (gL-1) 0.1 0.9 0.48051 

31 𝐾i,H2S,Shyd (gL-1) 0.1 0.9 0.48081 

32 𝐾i,NH3,Mac (gL-1) 0.1 0.3 0.22095 

33 𝐾i,Cu2+,Abu (gL-1) 0.1 0.9 0.48041 

34 𝐾i,Zn2+,Abu (gL-1) 0.1 0.9 0.48038 

35 𝐾i,Cr2+,Abu (gL-1) 0.1 0.9 0.48008 

36 𝐾i,Pb2+,Abu (gL-1) 0.1 0.9 0.48041 

37 𝐾i,Ni2+,Abu (gL-1) 0.1 0.9 0.48041 

38 𝐾i,Cu2+,Mac (gL-1) 0.1 0.9 0.48044 

39 𝐾i,Zn2+,Mac (gL-1) 0.1 0.9 0.48052 

40 𝐾i,Cr2+,Mac (gL-1) 0.1 0.9 0.47892 

41 𝐾i,Pb2+,Mac (gL-1) 0.1 0.9 0.48042 

42 𝐾i,Ni2+,Mac (gL-1) 0.1 0.9 0.48042 

43 𝐾M,Nio
 (gL-1) 0.001 0.01 0.00528 

44 𝐾M,Pio
 (gL-1) 0.001 0.01 0.00527 

45 𝑘M,suAsu (gL-1) 0.1 0.9 0.47809 

46 𝑘M,aaAaa (gL-1) 0.1 0.9 0.47919 

47 𝑘M,glyAgly (gL-1) 0.1 0.9 0.47978 

48 𝑘M,oaAoa (gL-1) 0.1 0.9 0.47888 

49 𝑘M,proApro (gL-1) 0.01 0.1 0.04837 

50 𝑘M,buAbu (gL-1) 0.01 0.1 0.05169 

51 𝑘M,vaAva (gL-1) 0.01 0.1 0.05266 

52 𝑘M,H2Mhyd (gL-1) 0.01 0.1 0.03533 

53 𝑘M,acMac (gL-1) 0.1 0.5 0.10038 

54 𝑘M,Sio,atSs (gL-1) 0.1 0.5 0.28649 
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55 𝑘M,proSpro (gL-1) 0.1 0.5 0.29016 

56 𝑘M,Sio,atSpro (gL-1) 0.1 0.5 0.29016 

57 𝑘M,acSac (gL-1) 0.1 0.5 0.28999 

58 𝑘M,Sio,atSac (gL-1) 0.1 0.5 0.28999 

59 kM,H2Shyd (gL-1) 0.01 0.1 0.05147 

60 𝑘M,Sio,atShyd (gL-1) 0.01 0.1 0.05041 

61 𝜇Asu,max,𝑇opt
 (day-1) 1.0 10.0 5.29994 

62 𝜇Aaa,max,𝑇opt
 (day-1) 1.0 10.0 5.30838 

63 𝜇Agly,max,𝑇opt
 (day-1) 1.0 10.0 5.28801 

64 𝜇Aoa,max,𝑇opt
 (day-1) 1.0 10.0 5.30106 

65 𝜇Apro,max,𝑇opt
 (day-1) 1.0 12.0 6.49033 

66 𝜇Abu,max,𝑇opt
 (day-1) 1.0 10.0 5.22845 

67 𝜇Ava,max,𝑇opt
 (day-1) 1.0 10.0 5.24772 

68 𝜇Mac,max,𝑇opt
 (day-1) 1.0 20.0 10.86708 

69 𝜇Mhyd,max,𝑇opt
 (day-1) 1.0 10.0 5.40755 

70 𝜇Ss,max,𝑇opt
 (day-1) 1.0 10.0 5.26495 

71 𝜇Spro,max,𝑇opt
 (day-1) 1.0 10.0 5.28305 

72 𝜇Sac,max,𝑇opt
 (day-1) 1.0 10.0 5.28666 

73 𝜇Shyd,max,𝑇opt
 (day-1) 1.0 10.0 5.28801 

74 𝑏dec,Asu (/) 0.01 0.05 0.02899 

75 𝑏dec,Aaa (/) 0.01 0.05 0.02907 

76 𝑏dec,Agly (/) 0.01 0.05 0.02902 

77 𝑏dec,Aoa (/) 0.01 0.05 0.02903 

78 𝑏dec,Apro (/) 0.01 0.05 0.02783 

79 𝑏dec,Abu (/) 0.01 0.05 0.02827 

80 𝑏dec,Ava (/) 0.01 0.05 0.02880 

81 𝑏dec,Mac (/) 0.01 0.05 0.01001 

82 𝑏dec,Mhyd (/) 0.01 0.05 0.01253 

83 𝑏dec,Ss (/) 0.01 0.05 0.02914 

84 𝑏dec,Spro (/) 0.01 0.05 0.02903 

85 𝑏dec,Sac (/) 0.01 0.05 0.02902 

86 𝑏dec,Shyd (/) 0.01 0.05 0.02808 

87 (𝐾L𝑎)CO2,a (oC-1day-1) 1.0 5.0 2.89764 

88 (𝐾L𝑎)CO2,b (day-1) 10.0 20.0 14.75347 

89 (𝐾L𝑎)CH4,a (oC-1day-1) 1.0 5.0 2.90732 

90 (𝐾L𝑎)CH4,b (day-1) 10.0 20.0 14.75598 

91 (𝐾L𝑎)H2,a (oC-1day-1) 0.0001 0.001 0.00034 

92 (𝐾L𝑎)H2,b (day-1) 0.001 0.01 0.00510 

93 (𝐾L𝑎)H2S,a (oC-1day-1) 0.0001 0.001 0.00010 

94 (𝐾L𝑎)H2S,b (day-1) 0.001 0.01 0.00281 

95 (𝐾L𝑎)NH3,a (oC-1day-1) 0.0001 0.001 0.00053 

96 (𝐾L𝑎)NH3,b (day-1) 0.001 0.01 0.00528 

97 𝑘cryst,CaCO3
 (day-1) 5.0 10.0 7.42617 

98 𝑘cryst,MgCO3
 (day-1) 5.0 10.0 7.37970 

99 𝑘cryst,FeCO3
 (day-1) 5.0 10.0 7.42335 

100 𝑘cryst,NiCO3
 (day-1) 5.0 10.0 7.37760 

101 𝑘cryst,CuCO3
 (day-1) 5.0 10.0 7.37770 

102 𝑘cryst,PbCO3
 (day-1) 5.0 10.0 7.37759 

103 𝑘cryst,ZnCO3
 (day-1) 5.0 10.0 7.37813 

104 𝑘cryst,FeS (day-1) 50.0 100.0 73.74520 

105 𝑘cryst,NiS (day-1) 50.0 100.0 73.77575 

106 𝑘cryst,CuS (day-1) 50.0 100.0 73.77565 

107 𝑘cryst,PbS (day-1) 50.0 100.0 73.77575 

108 𝑘cryst,ZnS (day-1) 50.0 100.0 73.77525 

109 𝑘cryst,Ca3(PO44)2
 (day-1) 50.0 100.0 73.79385 

110 𝑘cryst,Fe3(PO44)2
 (day-1) 50.0 100.0 73.76085 

111 𝑘cryst,Ni3(PO44)2
 (day-1) 50.0 100.0 73.77580 

112 𝑘cryst,MgNH4PO4
 (day-1) 100.0 200.0 147.87560 

113 𝑘cryst,K MgPO4
 (day-1) 50.0 100.0 73.84320 

114 pKAsu
lo  (/) 4.5 5.5 4.97564 

115 pKAsu
up

 (/) 7.5 8.5 7.97649 

116 pKAaa
lo  (/) 4.5 5.5 4.97558 

117 pKAaa
up

 (/) 7.5 8.5 7.97601 

118 pKAgly
lo  (/) 4.5 5.5 4.97555 

119 pKAgly
up

 (/) 7.5 8.5 7.97580 

120 pKAoa
lo  (/) 4.5 5.5 4.97560 

121 pKAoa
up

 (/) 7.5 8.5 7.97621 

122 pKApro
lo  (/) 5.5 6.5 5.97771 

123 pKApro
up

 (/) 8.0 9.0 8.48162 

124 pKAbu
lo  (/) 5.5 6.5 5.97646 

125 pKAbu
up

 (/) 8.0 9.0 8.48030 

126 pKAva
lo  (/) 5.5 6.5 5.97590 

127 pKAva
up

 (/) 8.0 9.0 8.47841 

128 pKMac
lo  (/) 5.5 6.5 5.97397 

129 pKMac
up

 (/) 8.0 9.0 8.49239 

130 pKMhyd
lo  (/) 5.5 6.5 5.97724 

131 pKMhyd
up

 (/) 8.0 9.0 8.47170 

132 pKSs
lo  (/) 5.5 6.5 5.97527 

133 pKSs
up

 (/) 7.5 8.5 7.97432 

134 pKSpro
lo  (/) 5.5 6.5 5.97553 

135 pKSpro
up

 (/) 7.5 8.5 7.97556 

136 pKSac
lo  (/) 5.5 6.5 5.97558 

137 pKSac
up

 (/) 7.5 8.5 7.97567 

138 pKShyd
lo  (/) 5.5 6.5 5.97586 

139 pKShyd
up

 (/) 7.5 8.5 7.97696 

140 𝛼Asu (K-1day-1) 0.00015 0.00019 0.00017 

141 𝛼Aaa (K-1day-1) 0.00015 0.00019 0.00017 

142 𝛼Agly (K-1day-1) 0.00015 0.00019 0.00017 

143 𝛼Aoa (K-1day-1) 0.00015 0.00019 0.00017 

144 𝛼Apro (K-1day-1) 0.00015 0.00019 0.00017 

145 𝛼Abu (K-1day-1) 0.00016 0.00020 0.00018 

146 𝛼Ava (K-1day-1) 0.00016 0.00020 0.00018 

147 𝛼Mac (K-1day-1) 0.00015 0.00019 0.00017 

148 𝛼Mhyd (K-1day-1) 0.00015 0.00019 0.00017 

149 𝛼Ss (K-1day-1) 0.00016 0.00020 0.00018 

150 𝛼Spro (K-1day-1) 0.00016 0.00020 0.00018 

151 𝛼Sac (K-1day-1) 0.00016 0.00020 0.00018 

152 𝛼Shyd (K-1day-1) 0.00016 0.00020 0.00018 

153 𝑇Asu,opt (
oC) 50 60 54.75515 

154 𝑇Asu,max (oC) 60 70 64.75515 

155 𝑇Asa,opt (
oC) 50 60 54.75515 

156 𝑇Aaa,max (oC) 60 70 64.75515 

157 𝑇Agly,opt (
oC) 50 60 54.75515 

158 𝑇Agly,max (oC) 60 70 64.75515 

159 𝑇Aoa,opt (
oC) 50 60 54.75515 

160 𝑇Aoa,max (oC) 60 70 64.75515 

161 𝑇Apro,opt (
oC) 50 60 54.75513 

162 𝑇Apro,max (oC) 60 70 64.75515 

163 𝑇Abu,opt (
oC) 55 65 59.75517 

164 𝑇Abu,max (oC) 65 75 69.75515 

165 𝑇Ava,opt (
oC) 55 65 59.75516 

166 𝑇Ava,max (oC) 65 75 69.75515 
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167 𝑇Mac,opt (
oC) 50 60 54.75522 

168 𝑇Mac,max (oC) 60 70 64.75515 

169 𝑇Mhyd,opt (
oC) 50 60 54.75515 

170 𝑇Mhyd,max (oC) 60 70 64.75515 

171 𝑇Ss,opt (
oC) 30 40 34.75274 

172 𝑇Ss,max (oC) 60 70 64.75389 

173 𝑇Spro,opt (
oC) 30 40 34.75592 

174 𝑇Spro,max (oC) 60 70 64.75487 

175 𝑇Sac,opt (
oC) 30 40 34.75672 

176 𝑇Sac,max (oC) 60 70 64.75518 

177 𝑇Shyd,opt (
oC) 30 40 34.75631 

178 𝑇Shyd,max (oC) 60 70 64.75447 
 

The biogas flow rates, obtained by simulation with the initial and 

various optimal values of design parameters (computed with active 

design variables from Sets 1 to Set 3 – optimal design), are 

compared to the measured data in Figure 6. The mean biogas flow 

rate, obtained with initial values of design parameters, differs on 

average from the measured values by around 6.5 % (average 

absolute daily difference divided by average daily measurement). 

By far the largest improvement of these results is reached by 

optimizing the active design variables of Set 1. Further optimization 

of the Set 2 and Set 3 gradually also improves the result but the 

improvements are becoming progressively small. It is clearly 

evident that the biogas flow rate obtained with the optimal 

(calibrated) values of all 178 design parameters, presented in 

Table 2, are the closest to the measured biogas rates. The simulated 

data of biogas flow rate agree very well with the measured values; 

the average difference is less than 0.1%. The total biogas volume, 

delivered by the biogas plant within 365 days, is by about 7% higher 

than the one computed with the initial values of design parameters. 

After optimization, this difference becomes practically negligible 

(less than 0.5%). 

 

Figure 6. Dynamics of biogas flow rate, BioModel calibration. 

The CH4 flow rates, obtained numerically with the initial and the 

optimal values of design parameters from various sets, are compared 

to the measured data in Figure 7. Initially, the simulated CH4 flow 

rate differs from the measured one by 9.4% on average. By 

optimizing the active design variables of Set 1, this difference is 

decreased substantially, while further improvements obtained by 

optimizing the design parameters from Set 2 and Set 3 are rather 

small, resulting in the final difference of approximately 1.2%. The 

total produced CH4 volume, delivered by the plant within 365 days, 

is around 10% higher than the one computed with the initial values 

of design parameters. After the optimization, this difference is below 

0.3%. 

 

Figure 7. Dynamics of  CH4 flow rate, BioModel calibration. 

The numerically obtained H2  flow rate history is compared to 

measured data in Figure 8. It can be observed that the substantial 

difference between measured and simulation (initial design) 

decreased drastically after optimizing Set 1. Further optimization 

including more design parameters improves gradually the result. 

The average difference, which was initially approximately 138%, 

fell after optimizing Set 1 to about 8.6% and after optimizing Set 3 

to 1%. With fully optimized design parameters, the computed total 

H2 volume differs by around 0.1% from the measured data; initially 

this difference was around 138%. 

 

Figure 8. Dynamics of  H2 flow rate, BioModel calibration. 

Figure 9 shows the comparison of dynamics of H2S  flow rate, 

obtained by simulation and experiment. Similar to H2 flow rate, it 

can be observed that the difference between measured and initial 

design is substantially. These differences are reduced significantly 

after optimizing the Set 1; however, little further progress can be 

observed after optimizing Set 2 and Set 3. Low values of H2S flow 

rate can be obtained by considering the Kemira BDP-840 additive, 

which contains FeCl2 to reduce H2S content in the produced biogas. 

The average difference, which was initially approximately 535%, 

fell after optimizing the design variables of Set 3 to a negligible 

value. With fully optimized design parameters (Set 3), the computed 

total H2S volume differs by less than 0.1% from the measured data; 

initially this difference was over 539%. 

 

Figure 9. Dynamics of  H2S flow rate, BioModel calibration. 

The numerically obtained dynamics of pH values are compared to 

experimental data in Figure 10. It can be seen that after the 
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stabilization period of 135 days, the optimal values of design 

parameters deliver a rather constant pH value very close to pH 7.7, 

which is the mean measured value. The average difference, which 

was initially approximately 4.5%, fell after optimizing the design 

variables of Set 3 to less than 0.3%. 

 

Figure 10. Dynamics of  pH value, BioModel calibration. 

According to the presented results, one can say that the optimization 

of the most important parameters (Set 2) yields relatively good 

results. For the fine tuning, however, the activation of all design 

parameters (Set 3, Optimal) may be worth a consideration. 

B. BioModel validation 
The calibrated values of all 178 design parameters were validated 

by using another set of measured data from the same biogas plant. 

The comparison between measured and predicted values of pH 

value, biogas and CH4 flow rates are given in Figure 11. 

 

Figure 11. Dynamics of biogas and CH4 flow rates and pH value, 

BioModel validation. 

Figure 12 shows the dynamics of H2 and H2S flow rates, obtained 

by measurements and simulation. 

 

Figure 12. Dynamics of  H2 and  H2S flow rates, BioModel 

validation. 

From Figure 11 and Figure 12 it can be seen, that the dynamics of 

the predicted AD performances follow very well the dynamics of the 

measured AD performance through the 365 days. The agreement 

between all measured and predicted AD performances is quite good; 

therefore, it can be concluded that the calibrated values of all 178 

design parameters by using the proposed ASO procedure enable 

satisfactory prediction of the AD process. 

C. Evaluation of the ASO procedure 
For the evaluation of the proposed ASO procedure, the measured 

and predicted AD performances are estimated by two statistical 

indicators (SI): coefficient of determination (𝑅2), Eq. (5), and the 

relative index of agreement 𝐼A,rel, Eq. (6) [12, 30]. 

𝑅2 = (
∑ |𝑦exp,𝑖−�̅�exp| |𝑦NS,𝑖−�̅�NS|  𝑛

𝑖=1

√∑ (𝑦exp,𝑖−�̅�exp)
2𝑛

𝑖=1  √∑ (𝑦NS,𝑖−�̅�NS)
2𝑛

𝑖=1

)

2

  (5) 

𝐼A,rel = 1 −
∑ (

𝑦exp,𝑖−𝑦NS,𝑖

�̅�exp
)

2
𝑛
𝑖=1

∑ (
|𝑦NS,𝑖−�̅�exp| + |𝑦exp,𝑖−�̅�exp| 

�̅�exp
)

2

𝑛
𝑖=1

  (6) 

 

where 𝑛 is the number of comparison points, 𝑦exp,𝑖 and 𝑦NS,𝑖 relate 

to the measured and predicted values of AD performance at 𝑖th day 

of the AD process, respectively, while  �̅�exp  and �̅�NS  are average 

values of the measured and predicted AD performance of the 

complete AD process, respectively. 

The coefficient of determination 𝑅2 and relative index of agreement 

𝐼A,rel in case of BioModel calibration and BioModel validation are 

given in Table 3. 

 

Table 3. Statistical indicators for ASO procedure 

SI Mode Design 𝑄CH4
  𝑄H2

  𝑄H2S  𝑄biogas 

𝑅2 
Calibration 

Initial 0.8215 0.4389 0.6073 0.8314 

Optimal 0.8310 0.6459 0.5985 0.8324 

Validation 0.8299 0.6130 0.6226 0.8616 

𝐼A,rel 
Calibration 

Initial 0.7569 0.0663 0.0317 0.8514 

Optimal 0.9350 0.8048 0.7582 0.9406 

Validation 0.9352 0.7823 0.7455 0.9535 
 

The obtained values of the statistical indicators confirm that the 

presented ASO procedure based on the included BioModel are 

reliable and efficient. It is clearly evident, that the optimization of 

all 178 parameters results in the improvement of the accuracy of 

simulation when compared with the BioModel containing only 113 

design parameters [12]. 

 

V. CONCLUSIONS 
The agreement of the obtained results by numerical simulation of 

the AD process in a single CSTR of a full-scale biogas plant and the 

measured AD performance through the observed two years, 

confirms the efficiency of the used AD BioModel which takes into 

account the Kemira BDP-840 additive to reduce H2S content in the 

produced biogas. Furthermore, it is evident that the active set 

optimization procedure and the engaged gradient-based optimizer to 

calibrate all 178 feedstock and model parameters is reliable and 

efficient, especially, if the computation of design derivatives is 

parallelized. 
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