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Abstract 

Ionic liquids (ILs) have emerged in recent years as 

promising green solvents to replace conventional solvents. This 

work aims to the separation of n-heptane-toluene mixture by 

extractive distillation using ionic liquid (IL) to enhance the 

performance of the process. The ionic liquid [4EMPy] [NTF2], 

"1-ethyl-4-methylpyridiniumBis(trifluoromethane-                

sulfonyl)imide”, was proposed due to its high selectivity 

compared to the conventional solvent "Sulfolane". 

The calculation of the VLE of n-heptane-toluene mixture in 

the presence of the solvent was performed using the NRTL 

activity coefficient model. The effect of the concentration of the 

IL showed that the relative volatility of n-heptane (1) to toluene 

(2) in the presence of [4EMPy] [NTF2] increases at a smaller 

solvent concentration compared to Sulfolane. The best 

operating conditions for the extractive distillation process were 

determined to recover n-heptane with a high purity of 99.9 mol. 

%. It was found that the ionic liquid [4EMPy] [NTF2] is more 

efficient than sulfolane for separating n-heptane/toluene close 

boiling point mixture even it is used in small amounts and it is 

less energy consuming. 

Keywords: n-heptane/toluene, close boiling point, NRTL, 

[4EMPy] [NTF2], extractive distillation, energy consumption. 

 

 

1 INTRODUCTION 
The separation of aromatic-aliphatic hydrocarbon mixtures is one of 

the most difficult separations in the chemical and petrochemical 

industries due to their close boiling points and the formation of 

azeotropes. These types of separations were first studied 42 years 

ago in a European project [32]. 

The separation of toluene from n-heptane mixture is an aromatic-

aliphatic separation. This separation is useful for the production of 

low aromatic fuels which are widely recommended nowadays [3]. 

Research has shown that this mixture can be separated by extractive 

distillation or by azeotropic distillation [7, 8, 14, 26, 28]. 

The currently used organic solvents for n-heptane/toluene 

separation such as sulfolane [5, 4, 6, 16, 39], N-methyl pyrrolidone 

(NMP) [16], N-formyl morpholine (NFM), and ethylene glycol [1, 

34, 39] show some disadvantages. Although, their boiling point is 

high, they still have some volatility that eventually pollutes the top 

product and large amounts of solvent or high reflux ratios are needed 

to obtain the desired product purity. Recently, ionic liquids as a new 

kind of “green” solvents have been proposed for being a potential 

solvent for separation process [9, 10, 12, 20, 22-24, 38, 40] and as a 

substituent of the organic solvents due to their high separation 

ability, negligible vapor pressure, relative low melting point and 

recyclability [31, 36, 37]. Many studies have demonstrated the great 

ability of these new class of solvents to separate complex mixtures 

by extractive distillation [7, 8, 14, 17-19, 26, 28]. 

In this work, to evaluate the thermodynamic and the energy 

efficiency of the extractive distillation process of the close-boiling 

point mixture n-heptane/toluene using IL"1-ethyl-4-

methylpyridinium Bis (trifluoromethanesulfonyl) imide [4EMPy] 

[NTF2], the sensitivity analysis of the key operating parameters of 

the process was performed using Aspen Plus software V.10.  

2 METHODS                                                                                

Physical and thermodynamic properties of the ionic liquid 

[4EMPy][NTF2] were estimated, such as critical properties using an 

extended group contribution method, which is based on the well-

known concepts of Lydersen and Joback and Reid [2], and vapor 

pressure using the Antoine equation [29]. The standard enthalpy of 

vaporization was predicted with Verevkin's method [33] and the 
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heat capacity was correlated with a group contribution method 

developped by Sattari and al. [30].                                                                       

The ionic liquid molecule [4EMPy][NTF2] was introduced into 

Aspen Plus with the properties listed in Tab. 1.    

The thermodynamic behavior of the n-heptane/toluene mixture in 

the presence of sulfolane and [4EMPy] [NTF2] ionic liquid was 

studied. The Non-Random two liquids NRTL model was used to 

calculate the vapor-liquid equilibrium based on the experimental 

data of the n-heptane (1) - toluene (2) system in the presence of the 

organic solvent sulfolane and the ionic liquid [4EMPy] [NTF2] [15, 

21, 25, 35] using Aspen plus software v10.  

Table 1. Physical properties of the ionic liquid [4EMPy] [NTF2] 

Properties 

Mw 

(g/mol) 

Tb     

(K) 

Tc     

(K) 

Pc   

(bar) 

[4EMPy][NTF2] 402.3 806.12 1465.08 25.88 

                                                                                                                      

In distillation, the separation efficiency of two constituents is often 

denoted by a quantity called the relative volatility αij which define 

the ease of separation of a given mixture 

𝛼𝑖𝑗 =
𝑦𝑖

𝑥𝑖
⁄

𝑦𝑗
𝑥𝑗

⁄
=

𝛾𝑖𝑃𝑖
0

𝛾𝑗𝑃𝑗
0                  (1) 

Where x is the mole fraction in the liquid phase, y is the mole 

fraction in the vapor phase, γ is the activity coefficient, and 𝑃𝑖
0  is 

the vapor pressure of the pure component.  

The solvent is introduced to increase the relative volatility as far 

from unity as possible. Since the ratio of 𝑃𝑖
0 / 𝑃𝑗

0 is constant at small 

temperature changes, the added solvent enhances the relative 

volatility as the ratio γi  ⁄ γj changes in the presence of the solvent, 

this ratio is called selectivity Sij [19]: 

𝑆𝑖𝑗 = (
𝛾𝑖

𝛾𝑗
)

𝑆

                        (2) 

3 RESULTS AND DISCUSSION 

3.1 Calculation of vapor - liquid equilibrium 

for n-heptane-toluene-solvent system 

The regression of the NRTL binary interaction parameters was done 

without considering the temperature dependence. The regressed 

parameters are grouped in Tab. 2. 

Table 2. Regressed binary interaction parameters of NRTL 

model 

 

3.1.1 Effect of the solvent concentration on the 

selectivity of sulfolane and [4EMPy] [NTF2]  
Figure 1 (a) and (b) respectively show the variation of the selectivity 

of sulfolane and the ionic liquid [4EMPy] [NTF2] as a function of 

the mole fraction of n-heptane in the pseudo-binary mixture.  

It can be seen from Fig. 1 that the selectivity reaches its maximum 

value at infinite dilution of n-heptane in toluene, which confirms that 

sulfolane and [4EMPy] [NTF2] are selective solvents with respect to 

toluene. 

From Fig.1 we notice that, the selectivity is proportional to the 

solvent mole fraction (x3) in the mixture. The ionic liquid [4EMPy] 

[NTF2] have a high selectivity toward toluene (Fig. 1 (b)) compared 

to sulfolane (Fig. 1 (a)), thus, for a solvent fraction of 0.5, the 

selectivity of sulfolane and [4EMPy] [NTF2] are respectively equals 

to 3.2 and 5.2.  
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Figure 1. Variation of selectivity as a function of the n-heptane 

mole fraction in the pseudo binary mixture, (a): sulfolane, (b): 

[4EMPy][NTF2] 

 

3.1.2 Effect of the solvent concentration on the relative 

volatility of n-heptane to toluene in the presence of 

sulfolane and [4EMPy] [NTF2] 
A relative volatility close to unity means that separation of the two 

component is likely to be difficult, whereas a relative volatility 

greater than unity means that few equilibrium stages are required for 

separation. For a binary system, equation (1) can be rearranged to 

give:  

𝑦𝑖 =
𝛼𝑖𝑗𝑥𝑖

1+(𝛼𝑖𝑗−1)𝑥𝑖
                  (3) 

The vapor-liquid equilibrium curves are plotted in Fig. 2 at different 

solvent concentrations, from which it can be seen that in the absence 

of the solvent, the relative volatility of n-heptane is very close to 

unity over the composition range from 0.8 to 1. The vapor-liquid 

equilibrium curve moves away from the diagonal as the mole 

fraction of the solvent (x3) increases.   

Component i Component j Aij Aji α 

n-heptane  Toluene -33.2 153.8 0.3 

n-heptane   Sulfolane 1329.7 934.6 0.3 

Toluene  Sulfolane 889.0 17.7 0.3 

n-heptane   [4EMPy][NTF2] 944.1 741.9 0.4 

Toluene   [4EMPy][NTF2] 363.0 -399.2 0.4 
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The relative volatility of n-heptane to toluene increases notably in 

the presence of [4EMPy] [NTF2] (Fig. 2 (b)) compared to sulfolane 

(Fig. 2 (a)) for the same solvent concentrations. As a result, the ionic 

liquid [4EMPy] [NTF2] is more efficient for n-heptane/toluene 

separation in comparison with the organic solvent sulfolane.  
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(b) 

Figure 2. Effect of the solvent molar fraction of sulfolane (a) 

and [4EMPy][NTF2] (b) on the relative volatility of n-heptane  

 

3.2 Simulation of the extractive distillation 

process for the sepration of n-heptane-

toluene mixture 

The simulated process flowsheet, as presented in Fig. 3, consists of 

two columns, an extractive distillation column for the separation of 

the n-heptane/toluene mixture using a heavy entrainer and a 

recovery column for the solvent regeneration. In extractive 

distillation column, the entrainer is fed continuously above the main 

feed mixture, bringing an additional extractive section in the 

column, between the stripping and the rectifying sections [11]. N-

heptane is recovered at the top of the extractive distillation column, 

and the mixture toluene + entrainer removed at the bottom is sent to 

the regeneration column. At the bottom of the regeneration column, 

the solvent is recovered with a high purity, and then recycled back 

to the extractive distillation column. 

The rigorous simulation of the extractive distillation process was 

carried out using Aspen plus V.10. The operating pressure of the 

extractive distillation process was set to 1 atm, the feed is assumed 

to be in the boiling liquid state and the solvent feed temperature was 

fixed to 25°C. The molar feed flow rate (F) was set to 100 kmoles/hr 

and the mixture was chosen for an equimolar composition. The n-

heptane purity in the distillate of the extractive distillation column 

and the solvent purity at the bottom of the regeneration column must 

be higher than 99.9 mol%.   

 

Figure 3. Extractive distillation process flowsheet for 

separating n-heptane from toluene using either sulfolane or 

[4EMPy] [NTF2] as an entrainer 

3.2.1 Sensitivity analysis of extractive distillation 

column using sulfolane and [4EMPy] [NTF2]as 

solvents  

3.2.1.1 Effect of solvent-to-feed molar ratio and reflux 

ratio on the n-heptane purity 

The effect of the solvent-to-feed ratio and the reflux ratio on the 

purity of n-heptane in the distillate shows that the purity is 

proportional to the solvent rate and to the reflux ratio in the presence 

of both sulfolane (Fig. 4 (a)) and [4EMPy] [NTF2] (Fig. 4 (b)). It can 

be seen from Fig. 4 (a) that the optimal values of the reflux and the 

solvent ratio to get a purity greater than 99.9 mol. % are respectively 

0.5 and 0.8 using sulfolane, while using [4EMPy] [NTF2] (Fig. 4 

(b)) the values of these parameters can be reduced to 0.1 for the 

reflux ratio and 0.4 for the solvent ratio.  
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(b) 

Figure 4. Effect of solvent-to-feed molar ratio and reflux ratio 

on the n-heptane purity in the distillate using Sulfolane (a) and 

[4EMPy] [NTF2] (b) 

3.2.1.2 Effect of the solvent feed stage and the main 

feed stage on the n-heptane purity 

The effects of solvent feed stage and feed stage of initial mixture on 

the purity of n-heptane in the distillate using sulfolane and [4EMPy] 

[NTF2] are represented in Fig. 5 (a) and (b). We notice from Fig. 5 

(a) that the high purity of n-heptane can be reached in column with 

extractive sections of 17, 16, 15 and 14 stages. It can be noted from 

this analysis that the minimum and the maximum number of stage 

in the extractive section allowing to obtain a purity higher than 99.9 

mol. %  using sulfolane are 14 and 17 stages respectively, the best 

feed stage is NF=20 and the entrainer stage can be chosen from 3 to 

6 stages from the top of the column.  

When using the ionic liquid [4EMPy] [NTF2] (Fig. 5 (a)), the purity 

of n-heptane reaches its maximum for the entrainer feed stage from 

2 to 6, and mixture feed stage from 20 to 22. This means that the 

minimum and the maximum number of stage in the extractive 

section to achieve purity greater than 99.9 mol. % are 14 and 19 

stages respectively.  

 

(a)  

 

 

(b)  

Figure 5. Effect of solvent stage and feed stage on the n-

heptane purity in the distillate using Sulfolane (a) and 

[4EMPy] [NTF2] (b) 

3.2.1.3 Effect solvent-to-feed molar ratio and reflux 

ratio on the reboiler duty  

The reboiler heat duty as a function of the solvent-to-feed molar 

ratio and reflux ratio at fixed purity of n-heptane is represented in 

Fig. 6 (a) and (b). It was shown that the reboiler duty is proportional 

to both solvent rate and reflux ratio. The best operating parameters 

of FE/F and R are determined by minimizing the energy consumed 

in the reboiler (QR) of the extractive distillation column. 

 

(a)  

 
(b) 

Figure 6. Effect of the solvent-to-feed molar ratio and the 

reflux ratio on the reboiler duty using sulfolane (a) and 

[4EMPy] [NTF2] (b) 
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3.2.2 Design parameters for the extractive distillation 

column using sulfolane and [4EMPy] [NTF2] 
The best operating parameters for the extractive distillation column 

were determined by the sensitivity analysis for a feed containing 50 

mol. % of n-heptane to recover n-heptane in the distillate with a high 

purity of 99.97 mol. %. The total number of stages was fixed to 30 

stages. The operating parameters of the extractive distillation 

column using sulfolane and [4EMPy] [NTF2] are displayed in Tab. 

3. 

Table 3. Design parameters of the extractive distillation 

column using Sulfolane and [4EMPy] [NTF2] 

Parameters 
Solvent  

Sulfolane [4EMPy][NTF2] 

Number of stages 30 30 

NE 5 3 

NF 22 20 

FE/F 1 0.33 

R 0.2 0.06 

n-heptane purity in mol.% 99.97 99.97 

QR (kW) 1149.53 1078.55 

Bottom temperature (°C) 123.38 133.13 

 

For the both solvents sulfolane and [4EMPy] [NTF2], the separation 

requires 17 stages in the extractive section to get a purity of n-

heptane of 99.97% in the distillate for the same total number of 

stages of the extractive distillation column. In addition, [4EMPy] 

[NTF2] needs less stages in the rectifying section compared to 

sulfolane and more stages for the stripping section, this means that 

the separation of n-heptane from toluene is easy when using the 

ionic liquid and that the affinity of [4EMPy] [NTF2] for toluene is 

higher than that of sulfolane. It is also noted that the extractive 

distillation column using [4EMPy] [NTF2] consumed less solvent 

flow rate for low reflux ratio and is less energy consuming.   

3.2.3 Design parameters for the regeneration column 

using sulfolane and [4EMPy] [NTF2] 
The separation of toluene from the solvent was achieved in a 

distillation column. The pressure of the regeneration column of 

sulfolane was set to 1 atm, however, the [4EMPy] [NTF2] ionic 

liquid is regenerated at a vacuum pressure to avoid decomposition 

of the ionic liquid [9]. The thermal decomposition temperature for 

the pyridinium ionic liquids is between 510-720 K, according to 

Jacob and al. The decomposition temperature of the used IL is not 

mentioned, nevertheless, it may be equal to or slightly less than the 

[BMPy] [NTF2] which is 670 K [13], for this purpose, the bottom 

temperature of the regeneration column using [4EMPy] [NTF2] 

should not exceed 396.85 °C. The operating parameters of the 

regeneration column using sulfolane and [4EMPy] [NTF2] are 

represented in Tab. 4. 

 

 

 

 

 

 

 

Table 4. Design parameters of the solvent regeneration column 

using Sulfolane and [4EMPy] [NTF2] 

Parameters 
Solvent  

Sulfolane [4EMPy][NTF2] 

Pressure (bar) 1.013 0.1 

Number of stages 6 4 

Feed stage 3 3 

R 0.4 0.12 

Solvent purity in mol.% 99.97 99.97 

QR (kW) 1650.41 1597.07 

Bottom temperature (°C) 286.26 323.48 

 

It can be seen from Tab. 4, that the separation of toluene from the 

ionic liquid [4EMPy] [NTF2] to be regenerated required less 

number of stages, reflux ratio and less energy consumption 

compared to sulfolane to get the same solvent purity. 

 CONCLUSION  

In this work,  the extractive distillation process for the separation of 

n-heptane-toluene mixture using [4EMPy] [NTF2] ionic liquid and 

sulfolane was investigated. The vapor-liquid equilibrium of the n-

heptane-toluene close boiling point mixture in the presence of 

different concentrations of solvent was calculated by the NRTL 

model using Aspen plus software. The binary interaction parameters 

of the model were regressed from the VLE experimental data. 

The thermodynamic study show that the ionic liquid [4EMPy] 

[NTF2] have a high selectivity for toluene compared to sulfolane. 

Furthermore, this ionic liquid is more efficient for n-heptane-toluene 

separation comparing to sulfolane because it increases the relative 

volatility of n-heptane even at low amounts  

The rigorous simulation of the extractive distillation process shows 

that the extractive distillation column using [4EMPy] [NTF2] 

requires lower values of solvent-to-feed molar ratio and reflux molar 

ratio compared to sulfolane to get a high purity of 99.97 mol.%  of 

n-heptane. 

Finally, we conclude that extractive distillation using the ionic liquid 

[4EMPy] [NTF2] is feasible and even very advantageous compared 

to the conventional process using sulfolane, as well as, the solvent 

flow rate and the overall energy consumption using the ionic liquid 

[4EMPy] [NTF2] can be reduced up to 67% and 4.44% respectively.  

Thereby, extractive distillation using ionic liquids can be considered 

as a potential energy saving technology for separating a close-

boiling point mixtures if a suitable ILs with a high selectivity are 

chosen to replace the organic solvents which are in most cases toxic, 

more volatile and not easily recyclable. 
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