

Photocatalytic reduction of CO₂ to methanol by Cu₂O/TiO₂ heterojunctions

1st S.-P. Cheng Department of Environmental Engineering National Cheng Kung University Tainan, Taiwan pingc2102@gmail.com 2nd L.-W. Wei Department of Environmental Engineering National Cheng Kung University Tainan, Taiwan wei3532607@gmail.com 3rd H.-P. Wang Department of Environmental Engineering National Cheng Kung University Tainan, Taiwan wanghp@ncku.edu.tw

Abstract

Conversion of CO₂ to low-carbon fuels using solar energy is considered an economically attractive and environmental friend route. The development of novel catalysts and the use of solar energy via photocatalysis is the key to achieve the goal of chemically reducing CO₂ under mild conditions. Thus, in this study, the novel Cu₂O/TiO₂ heterojunctions were used for CO₂-to-lowcarbon fuels. The p-n heterojunction is able to enhance the separation of photogenerated electron-hole pairs. By UV-vis diffuse reflection absorption spectroscopy, it is clear that Cu₂O coupled with TiO₂ causes a red-shift to the visible light range. Under a 6-h UV-vis irradiation, 12.4-70.6 µmol methanol/g-catalyst can be generated by the Cu₂O/TiO₂ heterojunctions. However, excess Cu₂O in the Cu₂O/TiO₂ heterojunctions may cause less absorption of UVvis light and decrease the excited electrons from TiO₂, which may obstruct the photoactivity for reduction of CO₂.

Keywords: photocatalysis, CO2, Cu2O, TiO2,

p-n heterojunction, methanol.

