

In situ FTIR studies for photocatalytic reduction of CO₂ by TiO₂ nanotubes

H.-H. Chang

¹Department of Environmental
Engineering
National Cheng Kung University
Tainan 70101, Taiwan
wanghp@mail.ncku.edu.tw

H.-Y. Chang

¹Department of Environmental

Engineering

National Cheng Kung University

Tainan 70101, Taiwan

wanghp@mail.ncku.edu.tw

H.-P. Wang

¹Department of Environmental

Engineering

National Cheng Kung University

Tainan 70101, Taiwan

wanghp@mail.ncku.edu.tw

Abstract

A better understanding of CO₂ adsorption on the one-dimensional TiO₂ nanotube (TiNT) is of great importance for improving its photocatalytic reduction ability. In this work, adsorption and photocatalytic reduction of CO₂ on the TiNT was studied by *in situ* FTIR. The IR absorbance features at 1303 and 1393 cm⁻¹ are associated with carbonate species, e.g., bidentate carbonate on the TiNT. Complete desorption of CO₂ from the TiNTs may occur at T>418 K. The *in situ* FTIR studies indicate bidentate carbonate and carboxylate species on the TiNTs, which may conduct the surface reactions enhanced by UV/Vis light to yield of low carbon fuels or chemicals.

Keywords: In situ FTIR, photocatalytic reduction of CO_2 , TiO_2 nanotubes

