
International Conference on Innovations in Energy Engineering & Cleaner Production IEECP21                                                    

 

 

1 

 
 

Description of Colombian Electricity Pricing Derivatives 
Dr. S Prabakaran, 

Associate Professor, 

School of Economics and Business Administration, 

Department of Accounting & Finance, 

Pontificia Universidad Javeriana Cali. Cali, Colombia. 

Email – jopraba@gmail.com     
 

Abstract 

Electricity markets are becoming a popular field of research 

amongst academics because of the lack of appropriate models 

for describing electricity price behavior and pricing derivatives 

instruments. Models for price dynamics must consider 

seasonality and spiky behavior of jumps which seem hard to 

model by standard jump process. Without good models for 

electricity price dynamics, it is difficult to think about good 

models for futures, forward, swaps, and option pricing. In this 

paper, we attempt to introduce an algorithm for pricing 

derivatives to intuition from the Colombian electricity market. 

The main ambition of this study is fourfold:  1) First we begin 

our approach through to simple stochastic models for electricity 

pricing. 2) Next, we derive analytical formulas for the prices of 

electricity derivatives with different derivatives tools. 3) Then 

we extent short of the model for price risk in the electricity spot 

market 4) Finally we construct the model estimation under the 

physical measures for the Colombian electricity market. And 

this paper ends with a conclusion.  

Key Words - Electricity markets, Energy Derivative, Option, 

and Forward Contract.  

I. INTRODUCTION 
Deregulation of electricity markets has led to a substantial increase 

in risk borne by market participants. The often unexpected, extreme 

spot price changes range even two orders of magnitude and can 

cause severe financial problems to the utilities that buy electricity in 

the wholesale market and deliver it to consumers at fixed prices. The 

utilities and other power market companies need to hedge against 

this price risk. A straightforward way to do it is to use derivatives, 

like forwards and options.  

 

Here, we use the latter approach and describe the spot price dynamic 

models to review the electricity pricing with details of how to 

implement the pricing of the electricity market an After specifying 

a model we have to choose for derivatives pricing methodology. 

However, such an approach fails in the case of electricity due to 

extremely limited storage possibilities. Therefore, instead of using a 

discrete-time model approach we employ a concept of the risk 

premium/market price of risk and find such a pricing measure that 

yields the observed forward market prices. With such methodology, 

we can derive forward prices from the spot price model and to find 

explicit formulas for premiums of European options written on spot, 

as well as, on forwarding prices. 

 

Over the last two decades, the electricity industry worldwide has 

undergone a profound restructuring process. Particularly in 

Colombia, laws 142 and 143 of 1994 in addition to later reforms, 

opened up an intensive reorganization of the electricity market, like 

the creation of the wholesale electricity market (MEM) in 1995 

simultaneously to the vertical unbundling of the generation, 

transmission, distribution, and retail activities, seeking to improve 

the efficiency and quality of the electricity industry. Under this new 

framework, the power generation and retail businesses could be 

competitive deregulated markets, whereas the remaining two, 

transmission and distribution, were established as regulated 

activities. 

 

Colombia has a hydro-dominated electricity market. Roughly 80% 

of its energy comes from hydro resources, 67% of its capacity, and 

50% of its firm energy—energy in an exceptionally dry period. The 

cornerstones of the wholesale electricity market in Colombia are the 

spot energy market and the firm energy market. The spot energy 

market is a single-zone hourly market that determines the spot 

energy price in every hour as well as the efficient dispatch of 

resources. 

 

This paper aims to introduce pricing electricity derivatives to the 

Colombian market with an alternative formalism.     

II. STOCHASTIC MODEL FOR 

ELECTRICITY PRICING DERIVATIVES  
In the last few years, there has been a rapidly increasing literature 

on stochastic models for the prices of electricity and other 

commodities. Many researchers have observed that the models 

typically used in financial markets are inappropriate due to the 

special features of commodity prices and especially of electricity 

prices as described in the introduction. 

 

In this section, we will give a short evaluation of some of the models 

considered so far in the literature and compare them with our 

approach. 

 

The choice of the stochastic model for electricity prices depends on 

the time granularity that needs to be reflected in the model. Liquidly 

traded futures and forward contracts typically have full months, 

quarters, or years as delivery periods, either as base load or peak 

load. Price quotes for single hour deliveries are in most cases only 

available as day-ahead prices from the spot market. However, many 

structured OTC products, such as swing options, are strongly 

influenced by the hourly price behavior. Since due to the non-

storability of electricity, spot products cannot be used for hedging 

purposes, the electricity market is a highly incomplete market and 

pure arbitrage option pricing methods fail for most structured 

products. Previous work has been focused mainly on either of the 

two following approaches:  

 

• Market models for futures prices: Instead of modeling the spot 

price and deriving futures prices, the futures prices themselves 

are modeled. This approach goes back to Black's model [1], 

where a single futures contract is considered. Ideas from the 
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Heath-Jarrow-Morton theory for interest rates [2] are used in 

[3], [4], [5] and [6] to model the dynamics of the whole futures 

price curve. Such models have the advantage that the market 

can be considered as being complete and standard risk-neutral 

pricing may be used. Risk-neutral parameters can often be 

implied from traded options on futures prices. The 

disadvantage of such approaches is that futures prices do not 

reveal information about price behavior on an hourly or even 

daily time scale.   

• Spot price models: This class of models aims at capturing the 

hourly price behavior by fitting their model to historical spot 

price data. Since there is no arbitrage relation between spot 

prices and futures prices, additional assumptions have to be 

made to use this model for pricing derivatives. Usually, this is 

done either by assuming the rational expectation hypothesis 

 

, =E ,  t T T tF S F     (1) 

 

As done e.g. in [7] to price generation assets, or by calibrating 

a market price of risk for each factor and then changing to an 

equivalent martingale measure 
*P  under which the relation 

*

, =E ,  t T T tF S F  holds.    

Most models for the spot market employ at least two risk factors: 

one factor capturing the short-term hourly price dynamics 

characterized by mean reversion and extremely high volatility, and 

the other factor representing long-term price behavior observed in 

the futures market. Since there are no liquidly traded derivatives on 

a daily or hourly time scale that have a strong dependence on the 

short-term risk factor, it is exceedingly difficult to estimate the 

short-term market price of risk.  

 

Through this paper, we will denote tS the spot market price at time 

t. Since are working in a deterministic interest rate framework, we 

will not distinguish between forward and futures prices. Therefore, 

single hour futures prices at time t for delivery at time T are 

conditional expectations under the equivalent martingale measure 
*

, =E ,  t T T tF S F     (2) 

Where  = :s t , t sF S is the natural filtration generated by the 

price process?  

Future prices for power delivery over a period ( )=tS  1 2,T T

are given by   

2 2

1 2
1 1

*

, , ,

2 1 2 1

1 1
=E = ,

- -

 
 
 

 
T T

t T T T t t T
T T

F S dT F F dT
T T T T

  (3) 

Or, in a discrete time setting by  

2 2

1 2

1 1

-1 -1
*

, , ,

= =2 1 2 1

1 1
=E = .

- -

 
 
  

 
T T

t T T t t t T

T T T T

F S F F
T T T T

  (4) 

The simplest model considering mean-reverting behavior is given 

by an Ornstein- Uhlenbeck process. Here the price process tS  is a 

diffusion process satisfying the stochastic differential equation   

( )= - ,− +t t tdS S a dt dW    (5) 

Where ( )tW is a standard Brownian motion,   the volatility of the 

process, and  the velocity with which the process reverts to its 

long term mean a. 

In electricity markets, prices show strongly mean-reverting behavior 

so that estimates   are quite large. Typical characteristic times for 

mean reversion are within a few days. Therefore, this model has the 

major drawback that futures prices are nearly constant over time, 

since under the assumption of (5) the futures price is given by 

( )( ) ( )0-

, =a 1-
 − − −

+
T t T t

t T tF e S e    (6) 

For this reason, several authors suggest a two-factor model, see e.g. 

[8], [9] and [10]. In [9] a model of the form        

( )=- − +t t t tdS S Y dt dW    (7) 

is suggested, where tY is a Brownian motion. A similar model is 

given in [10], where commodity prices are described in the form 

( )=exp ,+t t tS X Y     (8) 

where ( )tX  is an Ornstein-Uhlenbeck process responsible for the 

short-term variation and ( )tY  is a Brownian motion describing the 

long-term dynamics. The model we will introduce in and can be 

considered as an extension of the ideas of [10].     

All models considered so far did not consider seasonality. Some 

authors simply neglect this serious difficulty. Others propose to use 

deterministic seasonality described by sinusoidal functions, see [11], 

[12], [13] and [10]. In [14] it is suggested to use equation (5) with a 

long-run mean 
ta  describing the seasonal patterns. A general 

deterministic seasonality is proposed in [14] and [15]. Here, the spot 

price is modeled as  

( ) ( )( )= t =exp t+ +t t t tS f X or S f X   (9) 

with an arbitrary deterministic function ( )f t  and a mean-reverting 

stochastic process 
tX  

In our approach, the deterministic component ( )f t  is specified by 

the load forecast `t and additional stochastic behavior is introduced 

by the use of SARIMA models for the time series of load and prices. 

There are also different attempts to account for price spikes. One 

possibility to cope with spikes is the introduction of jump terms, see 

[4], [14], and [17]. The main criticism for these models is that under 

the typical assumption of a jump-diffusion model a large upward 

jump is not necessarily followed by a large downward jump. 

Therefore, some authors suggest hidden Markov models, also 

known as Markovian regime-switching models, where it is 

guaranteed that upward jumps are followed by downward jumps. 

Such models have been considered e.g. in [18, [19], [20], [21] and 

[22]. Regime-switching models are very intuitive candidates for 

electricity price models since there are some clear physical reasons 

for switches of regimes such as forced outages of important power 

plants. On the other hand, it seems to be difficult to combine regime-

switching with seasonality.  

Another approach is motivated by the economic background for 

price spikes. Prices are determined mainly by supply and demand 

(load). Therefore, the non-linear relation between load and price 

should be taken into account in the model. This non-linear 

transformation is called the 'power stack function' in [23] and [24]. 

They suggest an exponential function for that purpose. A similar 

model for spot prices has recently been considered in [1], where the 

relation    

  ( )=t tS f X      (10) 

is suggested with 
tX  being an Ornstein-Uhlenbeck process, and f  

a power function. We also prefer an approach based on the power 

stack function, since there is a natural interpretation of this non-

linear transform in terms of the merit order curve. 
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III. ELECTRICITY DERIVATIVE PRICING  

A. Electricity Options  
The power industry had been utilizing the idea of options through 

embedded terms and conditions in various supply and purchase 

contracts for decades, without explicitly recognizing and valuing the 

options until the beginning of the electricity industry restructuring 

in the U.K., the U.S. and the Nordic countries in the 1990s. The 

emergence of the electricity wholesale markets and the 

dissemination of option pricing and risk management techniques 

have created electricity options not only based on the underlying 

price attribute (as in the case with plain vanilla electricity call and 

put options), but also other attributes like volume, delivery location 

and timing, quality, and fuel type. 

A counterpart of each financial option can be created in the domain 

of electricity options by replacing the underlying of a financial 

option with electricity [25] for introduction to various kinds of 

financial options). Here, we describe a sample of electricity options 

that are commonly utilized in risk management applications in the 

generation and distribution sectors. These options usually have 

short- to medium maturity times such as months or a couple of years. 

Options with maturity times longer than 3 years are usually 

embedded in long-term supply or purchase contracts, which are 

termed as structured transactions. 

Now, we turn to the pricing of a European call option written on the 

electricity spot price. Recall, that a European option is a contract that 

gives the buyer the right to buy/sell the underlying commodity at 

some future date t (called maturity) at a certain price K (called the 

strike price). First, we find the pricing measure Q . Like Merton 

(1976) in the context of jump-diffusion processes, we assume that 

the dynamics of spikes and drops are the same in the actual and 

pricing measures. We start with finding the spot price dynamics 

under   parameterization. 

Let )(u  be a deterministic function square-integrable on 

 max,0 Tu , where 
maxT  is a time horizon long enough to contain 

all maturities of derivatives quoted in the market, and introduce a 

new process 
tW : 

+=
t

b

tt du
u

WW
0

,
)(



                (11) 

where b  is the volatility of the base regime. From the Girsanov 

theorem, we have that 
tW  is a Wiener process under a new measure 

Q  defined as 

























−−=  

max max

0

2

)(

2

1)(
 exp 

T T

o
b

u

b

du
u

dW
u

dQ

dQ







    (12) 

with the filtration W

tF , being the natural filtration of the process 
tW

.Now, the base regime process 
btX ,
 can be rewritten as: 

    tbbtbt dWdtXtdX +−−= ,, )(      (13) 

and the expected future spot price is given by: 

( )
( )

2

0
( )

0

( )

0

1

( ) 2

1

|

( )

s s

t t

t
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t

t u
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X e e

E P F p

e u du

p e c
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



 







− −

− −

+

 
+ − 

=  
 −
 

 
+ + 

 


 

td

t

bd gcep
dd

+












+−

+ 2

2

1

)(


.              (14) 

The function )(t  can be calibrated to the market forward prices 

so that ( ) t

t fFPE 00| = , e.g. by using some fitting procedure (like 

the least-squares minimization). Alternatively, one can find the risk 

premium and then use the relation between the market price of risk 

)(t  and the risk premium: 

 =−−
t

utt

bb tRPduuep
0

)()( )()( ,         (15) 

which is a simple consequence of the fact that 

)|()|()( 0 ott FPEFPEtRP −= , formula (15) and Ito's lemma.  

Now, the price of a European call option written on the electricity 

spot price can be derived.  

Option price formula. If the electricity spot price 
tP  is given by the 

MRS model then the price of a European call option written on 
tP  

with strike price K  and maturity T  is equal to: 

 

( )

,

( ) ( )

, ,

( )
( )

( ) ( )

T

bb T brT

T T T

bs T s bd T d

p C K
C K e

p C K p C K

−
 +

=  
+  

  (16) 

Where 

2

, 2

( ' )
( )  exp 

22

'
( ') 1

T b

s K m
C K

s

K m
m K

s



 −
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 
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  (17) 
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and 
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Further, 
( )

( )

0

2
( ) 2 2

0

' , 1
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2
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T
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
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 and 
),( 2LN

F  is 

the cumulative distribution function of the log-normal distribution 

with parameters   and 2 .  

Here, we assume that the option is settled in an infinitesimal period

 +TT , . However, in practice, the electricity spot price usually 

corresponds to delivery during some period (e.g. an hour, a day) and, 

hence, the maturity of the option should be specified on the same 

timescale. On the other hand, the analyzed spot price quotations 

usually represent some delivery period. For instance, if the 

considered data is quoted daily, then the maturity of the option 

would be also given in daily timescale and would correspond to 

daily delivery. 

B. Electricity Forwards  
Electricity forward contracts represent the obligation to buy or sell 

a fixed amount of electricity at a pre-specified contract price, known 

as the forward price, at certain time in the future (called maturity or 

expiration time). In other words, electricity forwards are custom-

tailored supply contracts between a buyer and a seller, where the 

buyer is obligated to take power and the seller is obligated to supply. 

The payoff of a forward contract promising to deliver one unit of 

electricity at price F at a future time T is: 

Payoff of a Forward Contract ( )−TS F  

Where 
TS is the electricity spot price at time T.  Although the payoff 

function (1) appears to be the same as for any financial forwards, 

electricity forwards differ from other financial and commodity 

forward contracts in that the underlying electricity is a different 

commodity at different times. The settlement price 
TS  is usually 

calculated based on the average price of electricity over the delivery 

period at the maturity time T. 

Probably, the most popular electricity derivatives are the forward 

contracts. Recall that a forward contract is an agreement to buy (sell) 

a certain amount of the underlying (here MWh of electricity) at a 

specified future date. The settlement of the contract can be specified 

in two ways: with the physical delivery of electricity or with only 

financial clearing. Both types of settlements are in the following 

called delivery. Denote the price at the time t  of a forward contract 

with delivery at the time T  by T

tf . Since the cost of entering a 

forward contract is equal to zero, the expected future payoff under 

the pricing measure should fulfill: 

( ) 0| =− t

T

tT FfPE ,                       (20) 

what implies that  ( )tT

T

t FPEf |= .          (21) 

Observe, that now we define the price of a forward contract at any 

future date t . This is motivated by the fact that the valuation at time 

0 of an option written on a forward contract requires the knowledge 

about the forward price dynamics at the option’s maturity t . 

Forward price formula. If the electricity spot price 
tP  is given by 

the MRS model, then the price at the time t  of a forward contract 

written on 
tP  with delivery at the time T  is given by the following 

formula

 ( )
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,   (22) 

where 
 ( )      ( )

  jRtTdsbjtT t
jRiRPFiRP = ==== II|| ,,

Note 

that in the above formula ( )tbt FXE |,

  is used, since this 

expectation depends on the state process value at a time t . Namely, 

if bRt =  then ( ) tbttbt XXFXE == ,, |
. On the other hand, if at 

time t  a spike or a drop occurred then 

( ) ( )1,, || −= tbttbt FXEFXE   and again this expectation is 

dependent on 
1−tR  value.  

When deriving the forward price dynamics, we must remember that 

the properties of the obtained model should comply with the 

observed market prices. One of the most pronounced features of the 

market forward prices is the observed term structure of volatility, 

called the Samuelson effect. Precisely, the volatility of the forward 

prices is quite a law for distant delivery periods, however, it 

increases rapidly with approaching maturity of the contracts. Here, 

the forward price volatility is described by the part 

 ( ) ( ) )(

, || tT

tbttT eFXEFbRP −−=   of the formula (22). Hence, 

it is specified by the volatility of the spot price base regime scaled 

with 
)( tTe −−

 and the corresponding probability of switching to 

the base regime. Observe that the scaling factor 
)( tTe −−

 exhibits 

the Samuelson effect as it increases too 1 with t  approaching 

maturity time T . Moreover, the forward price volatility, again due 

to the scaling factor, is lower than the spot price volatility. This is 

following the behavior of the market spot and forward prices.  

Electricity forward contracts listed on energy exchanges are usually 

settled during a certain period (a week, a month, a year, etc.). Denote 

the price at the time t  of a forward contract settled during the period 

 21,TT  
 21 ,TT

tf . The latter is the mean price of forwarding contracts 

with delivery during the period  21,TT , namely: 

 
( )

( ) ( )

2
1 2

2
1

1

1 2
,

1 2

, ,

, , |

T

tTT T
Tt

T
T t

T

w T T T f dT

f
w T T T E P F dT

=
=




,     (23) 

where ( )TTTw ,, 21
 is the weight function representing the time value 

of money. The form w  depends on the contract specification. For 

contracts settled at maturity, we have ( )
21

21

1
,,

TT
TTTw

−
= , while for 

instant settlement 
( )

21
,, 21 rTrT

rT

ee

re
TTTw

−−

−

−
=

, where 0r  is the 

interest rate (Benth et al., 2008a). The price 
 21 ,TT

tf  can be obtained 

from formulas (22) and (23). Indeed, we have: 
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C. Options Written on Electricity Forward 

Contracts 
Finally, we find an explicit formula for a European call option 

written on a forward contract delivering electricity during a 

specified period. Observe, that the forward price  21 ,TT

tf  

depends on the spot price at the time t  and, as a 

consequence, also on the state process value at the time t . 

We consider an option written on an electricity forward 

contract with settlement during a specified period, as it is the 

most popular specification of electricity options on energy 

exchanges. For example, in the EEX market, there are options 

written on forwarding contracts with monthly, quarterly, and 

yearly settlement periods. The maturity of such options is set 

to the fourth business day before the beginning of the 

underlying contract’s settlement period.  

Price formula for an option written on a forward contract. 

The price of a European call option with strike price K  and 

maturity t  written on a forward contract with delivery during 

the period  21,TT  is equal to: 

  ( )

 ( )

   

 

 

     ( ) 

1 2T ,T -rt 0
t 0 t,b t

0

0t

t

k
k t -k+1,b t -k+1

iÎ s,d k=1 k

0t t -1 t -k

K - B (b)
Cf K = e A (b)C + g

A (b)

P R = b | R = b +

K - B (i)
A (i)C + g

A (i)

×P R = i,R ¹b,...,R = b | R = b

  
  
  

 
  
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


 
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Where   

( )

   ( )  ( )
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, ,
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( )

   ( ) ( )

2

1

1 2

0

, ,
( )

|

T

T tT
T t

w T T T P
A b

R b R b e dT
− −

=
= =


,  (27) 

( )    ( )

 ( )
 

( )    ( )

( )    ( )

( )

2

1

2
2s s

1

2
2d d

2
1

1

T

k 1 2 T tT

T-β(T - t +k-1) -β(T -u)

t -k+1

1
Tμ + σ

2
s 1 2 T tT

1 1 2 T tTμ + σ
2

d TT

1 2 T
T

B (i)= w T ,T ,T P R = b | R = i ×

α
1- e - e λ(u)du dT +

β

e + c w T ,T ,T P R = s | R = i dT +

w T ,T ,T P R = s | R = i dT

c - e
+ w T ,T ,T g dT

 
 
 

 
 
 

 
 
 










 (28) 
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 (29) 

And )(, KC bt
is the “base regime part” of the price of a European 

call option written on the electricity spot price with maturity 

t  and strike K , see equation (29) with tT = . 

IV. PRICE RISK MODEL  
Electricity has proven to be the most volatile commodity, and 

it is not the exception in the Colombian competitive 

electricity market. It makes it compulsory to develop 

appropriate risk management to maximize agents' benefits 

and minimize the corresponding uncertainty upon them. 

Among the risks that firms have to handle, are a 

macroeconomic risk, price risk, market risk, credit risk, 

regulatory risk, country risk, and quantity risk. The last one 

is a non- tradable risk, and an implicit feature of electricity, 

which has to do with the amount of energy that will be 

demanded in the future, which follows a stochastic process as 

well as the spot price. This situation directly impacts the 

firm’s revenues and makes it necessary to include it when 

designing the hedging portfolio. 

Financial theory has developed research studies to find how 

to address this problem. In [26] electricity risk management 

is handled by a multi-market trading approach, while other 

references like [27] get to focus on best risk management 

trough forward on-peak and off-peak contracts. Nevertheless, 

the electricity derivatives are increasingly studied and used 

around the world to manage the financial risks and resource 

adequacy of power markets, like it is advocated in [28]. 

Particularly [29] proposed a financial call option to hedge 

against critic hydrologic scenarios in the Colombian 

electricity system by ensuring generation adequacy. 

Further, derivative instruments have been developed to also 

handle the quantity risk, like swing options, weather 

derivatives, interruptible contracts, among other instruments 

named in [30]. The features of these derivative products make 
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them be usually traded over the counter (OTC); therefore, 

they are low liquidity instruments, which is why they are not 

regarded in this paper. However, references [31] and [32] 

study quantity risk.  

Oum, Deng, and Orean [33]  deal with the static hedging 

problem of an LSE who has to serve an uncertain electricity 

demand q  at a regulated fixed price r  in a single period from 

0 to 1. Besides, the LSE procures the electricity to serve his 

customers, from the wholesale market at a spot price p . 

Hence the profit of the LSE would be: 

( ) ( ) qprqpy −=,     (30) 

To protect himself against price risk, the LSE can take a long 

position in 
9−q  forwarding contracts at a fixed forward price 

F . However, the LSE will face another risk that arises from 

the fact that demand q  may vary from the expected value 

at time 0 to the actual realized value at time 1. Then, if the 

actual demand realized by the retailer agent is qq + , then, 

the share of the profit in (28), that is at risk is: ( ) qpr − , 

where q  could be different to zero (gains/losses).  

To deal with this hedging problem, the authors derive the 

optimal hedging portfolio as a function of the spot price p . 

That is:  

( ) ( ) ( )pxqprqpY +−=,     (31) 

where ( )px  is the optimal hedging portfolio as a function of 

the spot price p .  

Regarding the LSE's preferences and risk aversion profile, it 

is necessary to identify its utility function U  over total profit 

Y . In turn, because of the positive correlation between price 

and demand, which will be evident later in the paper for the 

Colombian electricity market, there exists a joint probability 

function ( )qpf ,  defined on the probability measure P , 

which characterizes the behavior of p  and q  at time 1. On 

the other side, Q  is a risk-neutral probability measure by 

which the hedging instruments are priced and ( )pg  is the 

probability density function of p  under Q . Keeping this in 

mind, the optimization problem is formulated as follows:  

( ) ( )( )
max

x p E U Y p,q 
 

   (32) 

( )  0 s.t. =pxEQ    (33) 

where  E  and  QE  denote expectations under probability 

measures P  and Q , respectively. In (30) the constraint 

implies that the hedge portfolio ( )px  is self-financing, that is, 

the LSE can borrow funds in the money market, to purchase 

the derivative instruments needed to obtain the maximum 

expected utility over the total profit ( )qpY , . This constraint 

also means that there are no arbitrage opportunities through 

this hedging portfolio, under a constant risk-free rate. The 

optimization process yields as a result of the optimal payoff 

function ( )px . 

Through an extension of the fundamental calculus theorem, 

it is demonstrated that any twice continuously differentiable 

function can be written as follows, for fixed value F : 

    
( ) ( ) ( ) ( )

( ) ( )

( ) ( )0

1 '

''

''

F

F

x p x F x F p F

x K K p dK

x K p K dK

+

 +

=  +  − +

 − +

 −



   (34) 

The expression ( )+  in the above equation is equivalent to the 

function ( ),0max  . It is important to note that in the 

expressions above ( ) ( ) ( )K,0pmaxp,0Kmaxfp −−−   ,  ,  ,1  

correspond to the payoff profile of a bond, forward contract, 

put option, and call option, respectively. In this sense, and 

remaining the LEGO© approach theory presented, with ( )Fx  

units in bonds, ( )Fx'  units of forwarding contracts, ( )dKKx ''  

units of put options with the strike price ( )FKK   , and 

( )dKKx ''  units of call options with the strike price ( )FKK ''

, it is possible to replicate the resultant optimal hedging 

portfolio ( )px  from the optimization process. This financial 

derivative has an underlying asset the electricity spot price.  

 Viewed from this angle, to replicate the optimal function 

( )px , the equation (34) implies that it is necessary to have 

a set of continuum strike prices for both put and call options. 

Since markets are incomplete, there are no markets with that 

amount of strike prices on board, and assuming that there is 

only n  put options and m  call options available in the 

market, Oum, Deng, and Orend proposed a portfolio 

compounded by ( )Fx  units of bonds, ( )Fx'  units of 

forwarding contracts, ( ) ( )( )1''
2

1
−+ − i1i KxKx  units of put 

options with strike prices niK i ,...,1, = and 

( ) ( )( )
1''

2

1
−+ − j1j KxKx

 units of call options with strike 

prices miK j ,...,1, = . The errors of this replicating strategy are 

calculated depending on the range in which spot price is 

realized at time 1. 

V. MODEL ESTIMATION UNDER THE 

PHYSICAL MEASURE  
The non-storability feature of electricity along with the 

steeply rising supply and the inelastic demand curve, both 

schematically represented in Figure 1, makes the electricity 

price p  and the electricity demand q  to be positively 

correlated. It happens in this way in the Colombian electricity 

market, since the dispatch is carried out in order of merit, so, 

when demand rises during on-peak hours, it forces the system 

to put in operation a more expensive generation resource, 

increasing the spot price as well. 

Additional to the fact explained above, throughout summer 

seasons, the hydropower plants which are technologies with 
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lower variable costs, reduce their power production due to 

natural water inflows shortages and of course to a 

diminishment in water reserves into reservoirs. This turns out 

in a higher marginal system cost, so an increment in demand 

translates into an increase in the spot price. This increment in 

the spot price reaches larger values during summer seasons 

than during winter seasons. Therefore, the correlation 

between p  and q  is bigger during dry periods in the 

Colombian wholesale electricity market. 

The earlier reasons justify the usage of the price-quantity 

hedging strategy presented, to design suitable derivative 

instruments to be used by the agents of the electricity market.  

It is clear that the advantage offered by the financial 

derivative products arises from the fact that is likely to 

achieve the maximum expected value of total profit ( )qpY , , 

together with the minimum deviation of this profit (which 

means less uncertainty over LSE's total profit), after building 

a hedging portfolio with those instruments.  

 
To do so, a utility function to represent the risk aversion 

preferences of the agents like a mean-variance utility function 

is a good candidate to accomplish both goals at the same time. 

Here it is utilized the same mean-variance utility function 

which has been used in financial hedging literature to deal 

with non-tradable risk: 

( )  ( )22

2

1
YEYaYYU −−=

      (35) 

where a  represents the agent's risk aversion coefficient. 

Certainly, maximizing the expected value of the utility 

function in (33) ( )    ( )







−= YaVarYEYUE

2

1 is equivalent to 

maximize the expected value of ( )qpY ,  and also to minimize 

the variance of (33), which is the advantage provided by a 

price-quantity hedging portfolio. 

In equation (33) it is presented the optimal hedging function 

constrained to the mean-variance utility function. The 

arithmetic procedure to find this expression is developed. 

 

 

( ) / ( )1
( ) 1 ( , ) |

( ) / ( )

( ) / ( )
( , )

( ) / ( )

p

Q

p

pQ

Q

p

g p f p
x p E y p q p

a E g p f p

g p f p
E E y p q p

E g p f p


 
 = − − +
    

     

     (36) 

where )( pf p
 is the marginal density function of p  under the 

probability measure .P  

From the perspective of a clearinghouse or a market maker, 

who is willing to design the most adequate hedging 

instruments for all the participants in the market, the 

goodness of this model, is that equation (36) can be used to 

calculate the optimal payoff function for each retailer, which 

will determine the optimal hedging instruments needed by 

each particular retailer. Once this task is undertaken, and 

seeking to find the optimal hedging instruments for all of 

them jointly interacting in the market, here it is proposed to 

estimate a weighted average market payoff function ( )px  as 

presented in equation (36), which will represent the joint 

needs of all the agents and could be used to determine general 

hedging instruments -suitable for all-, by no favoring big or 

small agents and giving to each of them the same hedging 

opportunities.  

( ) 
=

=
N

i

ii pxwpx
1

)(
    (37) 

 Where, 

 



=





=
N

i

S

i

S

i

i

dppx

dppx
w

1 0

0

)(

)(    (38) 

The variable S  corresponds to a price-cap value defined 

under the market maker or clearinghouse criteria. Within the 

Colombian framework, this variable could be interpreted as 

the scarcity price associated with the firm energy market 

described above, since hedging above this price already exists 

given the call options related to that market. 

After calculating ( )px , the replicating methodology 

suggested is used to find the right number of bonds, forward 

contracts, put and call options needed to best describe the 

behavior of ( )px . 

Some of these financial instruments are currently available in 

the Colombian market, except the financial options. The 

simplest of them, bonds, can be found available in the stock 

market; forward contracts needed to replicate the function 

( )px , could be either the current bilateral contracts (not 

suggested), the forward contracts that are planned to be 

included in MOR proposal, or even better, future contracts 

which are quite possibly to be launched the next year by a 

central chamber of counter-party risk (CRCC) to be 

established soon in Colombia. Since there are no financial 

options to replicate the optimal hedging function on the 

current electricity market.  

Now, for the empirical analysis and the estimation procedure 

we use data from the Colombian electricity markets daily 

market representative rate value (in Colombian Pesos) the 

period from January 1, 1995, to December 2 2013 with 6853 

observations.  The fig 2 time series of the resulting price for 

the above Colombian electricity daily price.  
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Figure 2: History of Daily price 

 

The fig 3 gives the QQ plot for electricity daily price.  

 
Figure 3: Normal QQ plot.  

VI. CONCLUSION  
From the above discussion, in this paper, we attempted to 

introduce an algorithm for pricing derivatives to intuition 

from the Colombian electricity market. Initially, we started 

our approach through simple stochastic models for electricity 

pricing. And, we derived analytical formulas for prices of 

electricity derivatives with different derivatives tools. 3) 

Then we extended short of the model for price risk in the 

electricity spot market. Finally, we constructed the model 

estimation under the physical measures for the Colombian 

electricity market. And this paper ends with a conclusion.  
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